oue
Special Edition Using Visual C++ 6

=» MNext Chapter

Table of Contents:

. Introduction

Part | - Getting Started with Visual C++

. Chapter 1 - Building Your First Windows Application
. Chapter 2 - Dialogs and Controls
. Chapter 3 - Messages and Commands

Part Il - Getting Information from Your Applications

. Chapter 4 - Documents and Views

. Chapter 5 - Drawing on the Screen

. Chapter 6 - Printing and Print Preview

. Chapter 7 - Persistence and File 1/0

. Chapter 8 - Building a Complete Application: ShowString

Part |11 - Improving Your User Interface

. Chapter 9 - Status Bars and Toolbars

. Chapter 10 - Common Controls

. Chapter 11 - Help

. Chapter 12 - Property Pages and Sheets

Part IV - ActiveX Applicationsand ActiveX Controls

. Chapter 13 - ActiveX Concepts
. Chapter 14 - Building an ActiveX Container Application

. Chapter 15 - Building an ActiveX Server Application
. Chapter 16 - Building an Automation Server
. Chapter 17 - Building an ActiveX Control

Part V - Internet Programming

. Chapter 18 - Sockets, MAPI, and the Internet

. Chapter 19 - Internet Programming with the Winlnet Classes
. Chapter 20 - Building an Internet ActiveX Control

. Chapter 21 - The Active Template Library

Part VI - Advanced Programming Techniques

. Chapter 22 - Database Access

. Chapter 23 - SOL and the Enterprise Edition

. Chapter 24 - Improving Your Application's Performance

. Chapter 25 - Achieving Reuse with the Gallery and Your Own AppWizards
. Chapter 26 - Exceptions and Templates

. Chapter 27 - Multitasking with Windows Threads

. Chapter 28 - Future Explorations

Part VII - Appendixes

. Appendix A - C++ Review and Object-Oriented Concepts

. Appendix B - Windows Programming Review and a Look Inside CWnd

. Appendix C - The Developer Studio User Interface, Menus, and Toolbars
. Appendix D - Debugging

. Appendix E - MFC Macros and Globals

. Appendix F - Useful Classes

=» MNext Chapter

© Copyright Macmillan Computer Publishing. All rights reserved.

oue
=» Next Chapter 2 Contents

| ntroduction

. About the Author
. Dedication
. Acknowledgments
. Who Should Read This Book?
. Before You Start Reading
. What This Book Covers
o Dialogs and Controls
o Messages and Commands
o The View/Document Paradigm
o Drawing Onscreen
o Printing on Paper
o Persistence and File 1/0
o ActiveX Programming
o The Internet
o Database Access
o Advanced Material
. Conventions Used in This Book
. Time to Get Started

About the Author

Kate Gregory is a founding partner of Gregory Consulting Limited
(www.gregcons.com), which has been providing consulting and development services
throughout North America since 1986. Her experience with C++ stretches back to before
Visual C++ existed - she enthusiastical ly converted upon seeing the first release.
Gregory Consulting develops software and Web sites and specializes in combining
software development with Web site development to create active sites. They build

guality custom and off-the-shelf software components for Web pages and other
applications.

Dedication

To my children, Beth and Kevin, who keep me connected to the world away from the keyboard, and
remind me every day how good it feels to learn new things.

Acknowledgments

Writng a book is hard, hard work. What makes it possible is the support | get from those
around me. First, as always, my family, Brian, Beth, and Kevin, who know it's only
temporary. Brian does double duty as both supportive husband and world's best
technical editor. This time around | was lucky enough to have Bryan Oliver helping,
shooting figures, testing code, finding bugs, and general ly pitching in. Thanks, Bryan.

There is an army of editors, proofers, indexers, il lustrators, and general saints who
turn my Word documents into the book you hold in your hand. Many of the team
members this time have been involved in other Que projects with me, and | know that |
landed the "good ones" for this book. Special mention has to go to Olaf Meding, who
provided a terrific tech edit based on a fast-changing product. Joe Massoni and Mike
Blaszczak at Microsoft have also earned my gratitude during this release cycle.

While | cheerfully share the credit for the accurate and educational aspects of this
book, the mistakes and omissions | have to claim as mine alone. Please bring them to my
attention so that they can be corrected in subsequent printings and editions. | am as
grateful as ever to readers who have done so in the past, and improved this book in the
process.

Introduction

Visual C++ is a powerful and complex tool for building 32-bit applications for Window
95 and Windows NT. These applications are much larger and more complex than their
predecessors for 16-bit Windows or older programs that didn't use a graphical user
interface. Yet, as program size and complexity has increased, programmer effort has
decreased, at least for programmers who are using the right tools.

Visual C++ is one of the right tools. With its code-generating wizards, it can produce
the shell of a working Windows application in seconds. The class library included with
Visual C++, the Microsoft Foundation Classes (MFC), has become the industry standard
for Windows software development in a variety of C++ compilers. The visual editing
tools make layout of menus and dialogs a snap. The time you invest in learning to use
this product will pay for itself on your first Windows programming project.

Who Should Read This Book?

This book teaches you how to use Visual C++ to build 32-bit Windows applications,
including database applications, Internet applications, and applications that tap the
power of the ActiveX technology. That's a tall order, and to fit all that in less than a
thousand pages, some things have to go. This book does not teach you the following:

. The C++ programming language: You should already be familiar with C++. Appendix
A, "C++ Review and Object-Oriented Concepts,"” is a review for those whose C++
skilIs need a boost.

. How to use Windows applications: You should be a proficient Windows user, able to
resize and move windows, double-click, and recognize familiar toolbar buttons,
for example.

. How to use Visual C++ as a C compiler: If you already work in C, you can use Visual
C++ as your compiler, but new developers should take the plunge into C++.

. Windows programming without MFC: This, too, is okay for those who know it, but not
something to learn now that MFC exists.

. The internals of ActiveX programming: This is referred to in the ActiveX chapters,
which tell you only what you need to know to make it work.

You should read this book if you fit one of these categories:

. You know some C++ and some Windows programming techniques and are new to
Visual C++. You will learn the product much more quickly than you would if you
just tried writing programs.

. You've been working with previous versions of Visual C++. Many times users learn
one way to do things and end up overlooking some of the newer productivity
features.

. You've been working with Visual C++ 6 for a while and are beginning to suspect
you're doing things the hard way. Maybe you are.

« Youwork in Visual C++ 6 regularly, and you need to add a feature to your
product. For tasks like Help, printing, and threading, you'll find a "hand up" to
get started.

Before You Start Reading

You need a copy of Visual C++ 6 and must have it installed. The instal lation process is
simple and easy to follow, so it's not covered in this book.

Before you buy Visual C++ 6, you need a 32-bit Windows operating system: Windows 95,
Windows 98, or Windows NT Server or Workstation. That means your machine must be
reasonably powerful and modern - say, a 486 or better for your processor, at least 16MB
of RAM and 500MB of disk space, and a screen that can do 800 * 600 pixel displays or even
finer resolutions. The illustrations in this book were all prepared at a resolution of 800
* 600 and, as you will see, at times things become a little crowded. The sample code is all
available on the Web, so fol lowing along will be simpler if you also have a modem and
access to the Web.

Finally, you need to make a promise to yourself - that you will follow along in Visual
C++ as you read this book, clicking and typing and trying things out. You don't need to
type all the code if you don't want to: It's all on the Web site for you to look at.
However, you should be ready to open the files and look at the code as you go.

What ThisBook Covers

A topic such as Windows programming in Visual C++ covers a lot of ground. This book
contains 28 chapters and 6 reference appendixes (A to F). Be sure to look over the titles
of the appendixes now and turn to them whenever you are unsure how to do something.
They provide valuable references for the fol lowing:

. Appendix A, "C++ Review and Object-Oriented Concepts," reminds you of the basics
of the C++ language and the principles and benefits of object-oriented
programming.

. Appendix B, "Windows Programming Review and a Look Inside CWnd," covers the
specifics of Windows programming that are now hidden from you by MFC classes
such as CWnd.

. Appendix C, "The Visual Studio User Interface, Menus, and Toolbars," explains all
the menus, toolbars, editing areas on the screens, shortcuts, and so on, that make
up the highly complicated and richly powerful interface between you and Visual
Studio.

. Appendix D, "Debugging," explains the extra menus, windows, toolbars, and
commands involved in debugging a running application.

. Appendix E, "MFC Macros and Globals," summarizes the many preprocessor macros
and global variables and functions sprinkled throughout code generated by the
Developer Studio wizards.

. Appendix F, "Useful Classes," describes the classes used throughout the book to
manipulate dates, strings, and collections of objects.

Depending on your background and wil lingness to poke around in menus and the online
help, you might just skim these appendixes once and never return, or you might fill them
full of bookmarks and yellow stickies. Although they don't lead you through the
sample applications, they will teach you a lot.

The mainstream of the book is in Chapters 1 through 28. Each chapter teaches you an
important programming task or sometimes two closely related tasks, such as building a
taskbar or adding Help to an application. Detailed instructions show you how to build a
working application, or several working applications, in each chapter.

The first nine chapters cover concepts found in almost every Windows application; after
that, the tasks become less general. Here's a brief overview of some of the work that is
covered.

Dialogs and Controls

What Windows program does not have a dialog box? an edit box? a button? Dialog boxes
and controls are vital to Windows user interfaces, and all of them, even the simple
button or piece of static text, are windows. The common controls enable you to take
advantage of the learning time users have devoted to other programs and the
programming time developers have put in on the operating system in order to use the
same File Open dialog box as everybody else, the same hierarchical tree control, and so
on. Learn more about all these controls in Chapters 2, "Dialogs and Controls," and 10,
"Windows 95 Common Controls."

M essages and Commands

Messages form the heart of Windows programming. Whenever anything happens on a
Windows machine, such as a user clicking the mouse or pressing a key, a message is
triggered and sent to one or more windows, which do something about it. Visual C++
makes it easy for you to write code that catches these messages and acts on them.
Chapter 3, "Messages and Commands," explains the concept of messages and how MFC and
other aspects of Visual C++ enable you to deal with them.

The View/Document Paradigm

A paradigm is a model, a way of looking at things. The designers of MFC chose to design
the framework based on the assumption that every program has something it wants to
save in a file. That collection of information is referred to as the document. A view is one
way of looking at a document. There are many advantages to separating the view and
the document, explained further in Chapter 4, "Documents and Views." MFC provides

classes from which to inherit your document class and your view class, so that common
programming tasks such as implementing scrol Ibars are no longer your problem.

Drawing Onscreen

No matter how smart your Windows program is, if you can't tell the user what's going
on by putting some words or pictures onscreen, no one will know what the program has
done. A remarkable amount of the work is automatical ly done by your view classes (one
of the advantages of adopting the document/view paradigm), but at times you have to do
the drawing yourself. You learn about device contexts, scrolling, and more in Chapter
5, "Drawing on the Screen."

Printing on Paper

Adding printing capabilities to your program is sometimes the simplest thing in the world
because the code you use to draw onscreen can be reused to draw on paper. If more than
one page of information is involved, though, things become tricky. Chapter 6, "Printing
and Print Preview," explains all this, as well as mapping modes, headers and footers, and
more.

Persistence and File /O

Some good things are meant to be only temporary, such as the display of a calculator or
an online chat window. However, most programs can save their documents to a file and
open and load that file to re-create a document that has been stored. MFC simplifies
this by using archives and extending the use of the stream I/O operators >> and <<. You
learn all about reading and writing to files in Chapter 7, "Persistence and File 1/0."

ActiveX Programming

ActiveX is the successor to OLE, and it's the technology that facilitates communication
between applications at the object level, enabling you to embed a Word document in an
Excel spreadsheet or to embed any of hundreds of kinds of objects in any ActiveX
application. ActiveX chapters include Chapters 13, "ActiveX Concepts,” 14, "Building an
ActiveX Container Application,” 15, "Building an ActiveX Server Application," 16,
"Building an Automation Server," and 17, "Building an ActiveX Control."

The Internet

Microsoft recognizes that distributed computing, in which work is shared between two
or more computers, is becoming more and more common. Programs need to talk to each
other, people need to send messages across a LAN or around the world, and MFC has
classes that support these kinds of communication. The four Internet chapters in this

book are Chapter 18, "Sockets, MAPI, and the Internet," Chapter 19, "Internet
Programming with the Winlnet Classes,” Chapter 20, "Building an Internet ActiveX
Control," and Chapter 21, "The Active Template Library."

Database Access

Database programming keeps getting easier. ODBC, Microsoft's Open DataBase
Connectivity package, enables your code to call API functions that access a huge
variety of database files - Oracle, DBase, an Excel spreadsheet, a plain text file, old
legacy mainframe systems using SQL, whatever! You call a standard name function, and
the API provided by the database vendor or a third party handles the translation. The
details are in Chapters 22, "Database Access," and 23, "SQL and the Enterprise Edition."

Advanced M aterial

For developers who have mastered the basics, this book features some advanced chapters
to move your programming skills forward. You will learn how to prevent memory leaks,
find bottlenecks, and locate bugs in your code with the techniques discussed in Chapter
24, "Improving Your Application's Performance."

Reuse is a hugely popular concept in software development at the moment, especially
with managers who see a chance to lower their development budget. If you'd like to
write reusable code and components, Chapter 25, "Achieving Reuse with the Gallery and
Your Own AppWizards," will take you there.

Often C++ programmers are so busy learning the basics of how to make programs work
that they miss the features that make C++ truly powerful. You will learn in Chapter
26, "Exceptions and Templates," how to catch errors efficiently and how to use one set
of code in many different situations.

As user demands for high-performance software continue to multiply, developers must
learn entirely new techniques to produce powerful applications that provide fast
response times. For many developers, writing multithreaded applications is a vital
technique. Learn about threading in Chapter 27, "Multitasking with Windows Threads.

Chapter 28, "Future Explorations,” introduces you to topics that are definitely not for
beginners. Learn how to create console applications, use and build your own DLLs, and
work with Unicode.

Conventions Used in This Book

One thing this book has plenty of is code. Sometimes you need to see only a line or two,
so the code is mixed in with the text, like this:

i nt SomeFunction(int x, int y);

{
}

return x+y;

You can tell the difference between code and regular text by the fonts used for each.
Sometimes, you'l I see a piece of code that's too large to mix in with the text: You will
find an example in Listing 0.1.

Listing 0.1

CHost Di al og di al og(m pMai nWhd) ;
i f (dialog. DoModal () == | DOK)
{

AppSocket = new CSocket () ;
i f (AppSocket - >Connect (di al og. m host nane, 119))

{
whil e (AppSocket->CGet Status() == CONNECTI NG
{
Yi el dControl ();
}
i f (AppSocket ->Cet St atus() == CONNECTED)
{
CString response = AppSocket - >CGet Li ne() ;
Socket Avai | abl e = TRUE;
}
}
}
i f (!SocketAvail abl e)
{

Af xMessageBox("Can't connect to server. Please
- quit.", MB_OK| MB_I CONSTOP) ;

}

The character on the next-to-last line (=) is cal led the code continuation character. It
indicates a place where a line of code had to be broken to fit it on the page, but in
reality the line does not break there. If you're typing code from the book, don't break
the line there - keep going. If you're reading along in code that was generated for you
by Visual C++, don't be confused when the line does not break there.

Remember, the code is in the book so that you can understand what's going on, not for
you to type it. All the code is on the companion Web site as well. Sometimes you will
work your way through the development of an application and see several versions of a
block of code as you go - the final version is on the Web site. You'l I find the site by
going to www.mcp.com/info or www.gregcons.com/uvcé.htm.

TIP: Thisis a Tip: a shortcut or an interesting feature you might want to

http://www.mcp.com/info
http://www.gregcons.com/uvc6.htm

know about.

NOTE: This is a Note: It explains a subtle but important point. Don't skip
Notes, even if you're the kind who skips Tips. n

CAUTION: This is a Caution, and it's serious. It warns you of the horrible
consequences if you make a false step, so be sure to read all of these that
yOu cOme across.

When a word is being defined or emphasized, it's in italic. The names of variables,
functions, and C++ classes are all in monospaced font. Internet URLS and things you
should type are in bold. Remember, an URL never ends with punctuation, so ignore any
comma or period after the URL.

Timeto Get Started

That about wraps up things for the introduction. You've learned what you need to get
started, including some advanced warning about the notations used throughout the
book. Jump right in, learn all about writing Windows applications with MFC, and then
get started on some development of your own! Good luck and have fun.

=3» Next Chapter 2 Contents

© Copyright Macmillan Computer Publishing. All rights reserved.

oue
Special Edition Using Visual C++ 6

+= Previous Chapter =» MNext Chapter 2 Contents

-1 -
Building Your First Windows Application

. Creating a Windows Application
o Deciding How Many Documents the Application Supports
o Databases
o Compound Document Support
o Appearance and Other Options
o Other Options
o Filenames and Classnames
o Creating the Application
o TryltYourself
. Creating a Dialog-Based Application
. Creating DLLs, Console Applications, and More
o ATL COM AppWizard
o Custom AppWizard
o Database Project
o DevStudio Add-In Wizard
o ISAPI Extension Wizard
o Makefile
o MFC ActiveX ControlWizard
o MFC AppWizard (DLL)
o Win32 Application
o Win32 Console Application
o Win32 Dynamic Link Library
o Win32 Static Library
. Changing Your AppWizard Decisions

. Understanding AppWizard's Code
o A Single Document Interface Application
o Other Files
. Understanding a Multiple Document Interface Application
. Understanding the Components of a Dialog-Based Application
. Reviewing AppWizard Decisions and This Chapter

Creating a Windows Application

Visual C++ does not just compile code; it generates code. You can create a Windows
application in minutes with a tool called AppWizard. In this chapter you'll learn how
to tell AppWizard to make you a starter app with all the Windows boilerplate code you
want. AppWizard is a very effective tool. It copies into your application the code that
almost all Windows applications require. After all, you aren't the first programmer to
need an application with resizable edges, minimize and maximize buttons, a File menu
with Open, Close, Print Setup, Print, and Exit options, are you?

AppWizard can make many kinds of applications, but what most people want, at least at
first, is an executable (.exe) program. Most people also want AppWizard to produce
boilerplate code - the classes, objects, and functions that have to be in every program.
To create a program like this, Choose File, New and click the Projects tab in the New
dialog box, as shown in Figure 1.1.

FIG. 1.1 The Projects tab of the New dialog box is where you choose the kind of application you want
to build.

Choose MFC AppWizard (EXE) from the list box on the left, fill in a project name, and
click OK. AppWizard will work through a number of steps. At each step, you make a
decision about what kind of application you want and then click Next. At any time, you
can click Back to return to a previous decision, Cancel to abandon the whole process,
Help for more details, or Finish to skip to the end and create the application without
answering any more questions (not recommended before the last step). The fol lowing
sections explain each step.

NOTE: An MFC application uses MFC, the Microsoft Foundation Classes.
You will learn more about MFC throughout this book.

Deciding How Many Documents the Application Supports

javascript:popUp('01uvc01.gif')

The first decision to communicate to AppWizard, as shown in Figure 1.2, is whether your
application should be MDI, SDI, or dialog based. AppWizard generates different code and
classes for each of these application types.

FIG. 1.2 The first step in building a typical application with AppWizard is choosing the interface.

The three application types to choose from are as fol lows:

. Assingle document interface (SDI) application, such as Notepad, has only one
document open at a time. When you choose File, Open, the currently open file is
closed before the new one is opened.

. A multiple document interface (MDI) application, such as Excel or Word, can open
many documents (typically files) at once. There is a Window menu and a Close item
on the File menu. It's a quirk of MFC that if you like multiple views on a single
document, you must build an MDI application.

. Adialog-based application, such as the Character Map utility that comes with
Windows and is shown in Figure 1.3, does not have a document at all. There are no
menus. (If you'd like to see Character Map in action, it's usually in the Accessories
folder, reached by clicking Start. You may need to install it by using Add/Remove
programs under Control Panel.)

FIG. 1.3 Character Map is a dialog-based application.

As you change the radio button selection, the picture on the left of the screen changes
to demonstrate how the application appears if you choose this type of application.

NOTE:: Dialog-based applications are quite different from MDI or SDI
applications. The AppWizard dialogs are different when you're creating a
dialog-based application. They are presented later in the section "Creating
a Dialog-Based Application.”

Beneath these choices is a checkbox for you to indicate whether you want support for
the Document/View architecture. This framework for your applications is explained in
Chapter 4, "Documents and Views." Experienced Visual C++ developers, especial ly those
who are porting an application from another development system, might choose to turn
off this support. You should leave the option selected.

Lower on the screen is a drop-down box to select the language for your resources. If
you have set your system language to anything other than the default, English[United
States], make sure you set your resources to that language, too. If you don't, you will

javascript:popUp('01uvc02.gif')
javascript:popUp('01uvc03.gif')

encounter unexpected behavior from ClassWizard later. (Of course, if your application
is for users who will have their language set to U.S. English, you might not have a
choice. In that case, change your system language under Control Panel.) Click Next
after you make your choices.

Databases

The second step in creating an executable Windows program with AppWizard is to choose
the level of database support, as shown in Figure 1.4.

FIG. 1.4 The second step to building a typical application with AppWizard is to set the database
options you will use.

There are four choices for database support:
. Ifyou aren't writing a database application, choose None.

. Ifyou want to have access to a database but don't want to derive your view from
CFormView or have a Record menu, choose Header Files Only.

. Ifyou want to derive your view from CFormView and have a Record menu but
don't need to serialize a document, choose Database View Without File Support.
You can update database records with CRecordset, an MFC class discussed in more
detail in Chapter 22, "Database Access."

. If you want to support databases as in the previous option but also need to save a
document on disk (perhaps some user options), choose Database View With File
Support.

Chapter 22 clarifies these choices and demonstrates database programming with MFC. If
you choose to have a database view, you must specify a data source now. Click the Data
Source button to set this up.

As you select different radio buttons, the picture on the left changes to show you the
results of your choice. Click Next to move to the next step.

Compound Document Support

The third step in running AppWizard to create an executable Windows program is to
decide on the amount of compound document support you want to include, as shown in
Figure 1.5. OLE (object linking and embedding) has been official ly renamed ActiveX to
clarify the recent technology shifts, most of which are hidden from you by MFC.
ActiveX and OLE technology are jointly referred to as compound document technology.
Chapter 13, "ActiveX Concepts,"” covers this technology in detail.

javascript:popUp('01uvc04.gif')

FIG. 1.5 The third step of building a typical application with AppWizard is to set the compound
document support you will need.

There are five choices for compound document support:

If you are not writing an ActiveX application, choose None.

. Ifyou want your application to contain embedded or linked ActiveX objects, such
as Word documents or Excel worksheets, choose Container. You learn to build an
ActiveX container in Chapter 14, "Building an ActiveX Container Application."

. Ifyou want your application to serve objects that can be embedded in other
applications, but it never needs to run as a standalone application, choose Mini
Server.

. Ifyour application serves documents and also functions as a standalone
application, choose Full Server. In Chapter 15, "Building an ActiveX Server
Application,” you learn to build an ActiveX full server.

. Ifyou want your application to have the capability to contain objects from other
applications and also to serve its objects to other applications, choose Both
Container and Server.

IT you choose to support compound documents, you can also support compound files.
Compound files contain one or more ActiveX objects and are saved in a special way so
that one of the objects can be changed without rewriting the whole file. This spares
you a great deal of time. Use the radio buttons in the middle of this Step 3 dialog box to
say Yes, Please, or No, Thank You to compound files.

If you want your application to surrender control to other applications through
automation, check the Automation check box. (Automation is the subject of Chapter 16,
"Building an Automation Server.") If you want your application to use ActiveX
controls, select the ActiveX Controls check box. Click Next to move to the next step.

NOTE: If you want your application to be an ActiveX control, you don't
create a typical .exe application as described in this section. Creating
ActiveX controls with the ActiveX ControlWizard is covered in Chapter 17,
"Building an ActiveX Control."

Appearance and Other Options

javascript:popUp('01uvc05.gif')

The fourth step in running AppWizard to create an executable Windows program (see
Figure 1.6) is to determine some of the interface appearance options for your application.
This Step 4 dialog box contains a number of independent check boxes. Check them if you
want a feature; leave them unchecked if you don't.

FIG. 1.6 The fourth step of building a typical application with AppWizard is to set some interface
options.

The following are the options that affect your interface's appearance:

. Docking Toolbar. AppWizard sets up a toolbar for you. You can edit it to remove
unwanted buttons or to add new ones linked to your own menu items. This is
described in Chapter 9, "Status Bars and Toolbars."

. Initial Status Bar. AppWizard creates a status bar to display menu prompts and other
messages. Later, you can write code to add indicators and other elements to this
bar, as described in Chapter 9.

. Printing and Print Preview. Your application will have Print and Print Preview
options on the File menu, and much of the code you need in order to implement
printing will be generated by AppWizard. Chapter 6, "Printing and Print Preview,"
discusses the rest.

. Context-Sensitive Help. Your Help menu will gain Index and Using Help options, and
some of the code needed to implement Help will be provided by AppWizard. This
decision is hard to change later because quite a lot of code is added in different
places when implementing Context-Sensitive Help. Chapter 11, "Help," describes
Help implementation.

. 3D Controls. Your application will look like a typical Windows 95 application. If
you don't select this option, your dialog boxes will have a white background, and
there will be no shadows around the edges of edit boxes, check boxes, and other
controls.

. MAPI(Messaging API). Your application will be able to use the Messaging API to
send fax, email, or other messages. Chapter 18, "Sockets, MAPI, and the Internet,”
discusses the Messaging API.

. Windows Sockets. Your application can access the Internet directly, using protocols
like FTP and HTTP (the World Wide Web protocol). Chapter 18 discusses sockets.
You can produce Internet programs without enabling socket support if you use
the new Winlnet classes, discussed in Chapter 19, "Internet Programming with the
Winlnet Classes."”

You can ask AppWizard to build applications with "traditional” toolbars, like those in

javascript:popUp('01uvc06.gif')

Word or Visual C++ itself, or with toolbars like those in Internet Explorer. You can
read more about this in Chapter 9.

You can also set how many files you want to appear on the recent file list for this
application. Four is the standard number; change it only if you have good reason to do
sO.

Clicking the Advanced button at the bottom of this Step 4 dialog box brings up the
Advanced Options dialog box, which has two tabs. The Document Template Strings tab is
shown in Figure 1.7. AppWizard builds many names and prompts from the name of your
application, and sometimes it needs to abbreviate your application name. Until you are
familiar with the names AppWizard builds, you should check them on this Document
Template Strings dialog box and adjust them, if necessary. You can also change the
mainframe caption, which appears in the title bar of your application. The file extension,
iIf you choose one, will be incorporated into filenames saved by your application and
will restrict the files initial ly displayed when the user chooses File, Open.

The Window Styles tab is shown in Figure 1.8. Here you can change the appearance of
your application quite dramatically. The first check box, Use Split Window, adds all the
code needed to implement splitter windows like those in the code editor of Developer
Studio. The remainder of the Window Styles dialog box sets the appearance of your main
frame and, for an MDI application, of your MDI child frames. Frames hold windows; the
system menu, title bar, minimize and maximize boxes, and window edges are all frame
properties. The main frame holds your entire application. An MDI application has a
number of MDI child frames - one for each document window, inside the main frame.

FIG. 1.7 The Document Template Strings tab of the Advanced Options dialog box lets you adjust the
way names are abbreviated.

FIG. 1.8 The Window Styles tab of the Advanced Options dialog box lets you adjust the appearance of
your windows.

Here are the properties you can set for frames:

. Thick Frame. The frame has a visibly thick edge and can be resized in the usual
Windows way. Uncheck this to prevent resizing.

. Minimize Box. The frame has a minimize box in the top-right corner.
. Maximize Box. The frame has a maximize box in the top-right corner.
. System Menu. The frame has a system menu in the top-left corner.

« Minimized. The frame is minimized when the application starts. For SDI applications,

javascript:popUp('01uvc07.gif')
javascript:popUp('01uvc08.gif')

this option will be ignored when the application is running under Windows 95.

. Maximized. The frame is maximized when the application starts. For SDI
applications, this option will be ignored when the application is running under
Windows 95.

When you have made your selections, click Close to return to step 4 and click Next to
move on to the next step.

Other Options

The fifth step in running AppWizard to create an executable Windows program (see
Figure 1.9) asks the leftover questions that are unrelated to menus, OLE, database
access, or appearance. Do you want comments inserted in your code? You certainly do.
That one is easy.

FIG. 1.9 The fifth step of building an application with AppWizard is to decide on comments and the
MFC library.

The next question isn't as straightforward. Do you want the MFC library as a shared
DLL or statically linked? A DLL (dynamic link library) is a collection of functions used
by many different applications. Using a DLL makes your programs smaller but makes the
instal lation a little more complex. Have you ever moved an executable to another
directory, or another computer, only to find it won't run anymore because it's missing
DLLs? If you statically link the MFC library into your application, it is larger, but it is
easier to move and copy around.

If your users are likely to be developers themselves and own at least one other
application that uses the MFC DLL or aren't intimidated by the need to install DLLs as
well as the program itself, choose the shared DLL option. The smaller executable is
convenient for all. If your users are not developers, choose the statically linked
option. It reduces the technical support issues you have to face with inexperienced users.
If you write a good install program, you can feel more confident about using shared
DLLs.

After you've made your Step 5 choices, click Next to move to Step 6.
Filenames and Classnames

The final step in running AppWizard to create an executable Windows program is to
confirm the classnames and the filenames that AppWizard creates for you, as shown in
Figure 1.10. AppWizard uses the name of the project (FirstSDI in this example) to build
the classnames and filenames. You should not need to change these names. If your
application includes a view class, you can change the class from which it inherits; the

javascript:popUp('01uvc09.gif')

defaultis CView, but many developers prefer to use another view, such as CScrol1View
or CEditView. The view classes are discussed in Chapter 4. Click Finish when this Step 6
dialog box is complete.

TIP: Objects, classes, and inheritance are reviewed in Appendix A, "C++
Review and Object-Oriented Concepts."

FIG. 1.10 The final step of building a typical application with AppWizard is to confirm filenames and
classnames.

Creating the Application

After you click Finish, AppWizard shows you what is going to be created in a dialog box,
similar to Figure 1.11. If anything here is wrong, click Cancel and work your way back
through AppWizard with the Back buttons until you reach the dialog box you need to
change. Move forward with Next, Finish; review this dialog box again; and click OK to
actually create the application. This takes a few minutes, which is hardly surprising
because hundreds of code lines, menus, dialog boxes, help text, and bitmaps are being
generated for you in as many as 20 files. Let it work.

FIG. 1.11 When AppWizard is ready to build your application, you get one more chance to confirm
everything.

Try It Yoursdf

If you haven't started Developer Studio already, do so now. If you've never used it
before, you may find the interface intimidating. There is a full explanation of all the
areas, toolbars, menus, and shortcuts in Appendix C, "The Visual Studio User Interface,
Menus, and Toolbars."

Bring up AppWizard by choosing File, New and clicking the Projects tab. On the Projects
tab, fill in a folder name where you would like to keep your applications; AppWizard
will make a new folder for each project. Fill in FirstSDI for the project name; then
move through the six AppWizard steps. Choose an SDI application at Step 1, and on all
the other steps simply leave the selections as they are and click Next. When AppWizard
has created the project, choose Build, Build from the Developer Studio menu to compile
and link the code.

When the build is complete, choose Build, Execute. You have a real, working Windows
application, shown in Figure 1.12. Play around with it a little: Resize it, minimize it,
maximize it.

javascript:popUp('01uvc10.gif')
javascript:popUp('01uvc11.gif')

FIG. 1.12 Your first application looks like any full-fledged Windows application.

Try out the File menu by choosing File, Open; bring up the familiar Windows File Open
dialog (though no matter what file you choose, nothing seems to happen); and then
choose File, Exit to close the application. Execute the program again to continue
exploring the capabilities that have been automatically generated for you. Move the
mouse cursor over one of the toolbar buttons and pause; a ToolTip will appear,
reminding you of the toolbar button's purpose. Click the Open button to confirm that it
Is connected to the File Open command you chose earlier. Open the View menu and click
Toolbar to hide the toolbar; then choose View Toolbar again to restore it. Do the same
thing with the status bar. Choose Help, About, and you'l I see it even has an About box
with its own name and the current year in the copyright date (see Figure 1.13).

Repeat these steps to create an MDI application called FirstMDI. The creation process
will differ only on Step 0, where you specify the project name, and Step 1, where you
choose an MDI application. Accept the defaults on all the other steps, create the
application, build it, and execute it. You'l | see something similar to Figure 1.14, an MDI
application with a single document open. Try out the same operations you tried with
FirstSDI.

FIG. 1.13 You even get an About box in this start application.
FIG. 1.14 An MDI application can display a number of documents at once.

Choose File, New, and a second window, FirstM2, appears. Try minimizing, maximizing, and
restoring these windows. Switch among them using the Window menu. All this
functionality is yours from AppWizard, and you don't have to write a single line of code
to getit.

Creating a Dialog-Based Application

A dialog-based application has no menus other than the system menu, and it cannot save
or open a file. This makes it good for simple utilities like the Windows Character Map.
The AppWizard process is a little different for a dialog-based application, primarily
because such applications can't have a document and therefore can't support database
access or compound documents. To create a dialog-based application, start AppWizard as
you did for the SDI or MDI application, but in Step 1 choose a dialog-based application,
as shown in Figure 1.15. Call this application FirstDialog.

FIG. 1.15 To create a dialog-based application, specify your preference in Step 1 of the AppWizard
process.

Choose Dialog Based and click Next to move to Step 2, shown in Figure 1.16.

javascript:popUp('01uvc12.gif')
javascript:popUp('01uvc13.gif')
javascript:popUp('01uvc14.gif')
javascript:popUp('01uvc15.gif')

FI1G. 1.16 Step 2 of the AppWizard process for a dialog-based application involves choosing Help,
Automation, ActiveX, and Sockets settings.

If you would like an About item on the system menu, select the About Box item. To have
AppWizard lay the framework for Help, select the Context-Sensitive Help option. The
third check box, 3D Controls, should be selected for most Windows 95 and Windows NT
applications. If you want your application to surrender control to other applications
through automation, as discussed in Chapter 16, select the Automation check box. If you
want your application to contain ActiveX controls, select the ActiveX Controls check
box. If you are planning to have this application work over the Internet with sockets,
check the Windows Sockets box. (Dialog-based apps can't use MAPI because they have no
document.) Click Next to move to the third step, shown in Figure 1.17.

As with the SDI and MDI applications created earlier, you want comments in your code.
The decision between static linking and a shared DLL is also the same as for the SDI and
MDI applications. If your users are likely to already have the MFC DLLs (because they
are developers or because they have another product that uses the DLL) or if they
won't mind instal ling the DLLs as well as your executable, go with the shared DLL to
make a smaller executable file and a faster link. Otherwise, choose As A Statically
Linked Library. Click Next to move to the final step, shown in Figure 1.18.

FIG. 1.17 Step 3 of the AppWizard process for a dialog-based application deals with comments and
the MFC library.

FIG. 1.18 Step 4 of the AppWizard process for a dialog-based application gives you a chance to
adjust filenames and classnames.

In this step you can change the names AppWizard chooses for files and classes. This is
rarely a good idea because it will confuse people who maintain your code if the
filenames can't be easily distinguished from the classnames, and vice versa. If you

realize after looking at this dialog that you made a poor choice of project name, use
Back to move all the way back to the New Project Workspace dialog, change the name,
click Create, and then use Next to return to this dialog. Click Finish to see the summary
of the files and classes to be created, similar to that in Figure 1.109.

If any information on this dialog isn't what you wanted, click Cancel and then use Back
to move to the appropriate step and change your choices. When the information is right,
click OK and watch as the application is created.

To try it yourself, create an empty dialog-based application yourself, call it FirstDialog,
and accept the defaults for each step of AppWizard. When it's complete, choose Build,
Build to compile and link the application. Choose Build, Execute to see it in action.
Figure 1.20 shows the empty dialog-based application running.

javascript:popUp('01uvc16.gif')
javascript:popUp('01uvc17.gif')
javascript:popUp('01uvc18.gif')

FIG. 1.19 AppWizard confirms the files and classes before creating them.
FIG. 1.20 A starter dialog application includes a reminder of the work ahead of you.

Clicking the OK or Cancel button, or the X in the top-right corner, makes the dialog
disappear. Clicking the system menu in the top-left corner gives you a choice of Move,
Close, or About. Figure 1.21 shows the About box that was generated for you.

FIG. 1.21 The same About box is generated for SDI, MDI, and dialog-based applications.

Creating DLLs, Console Applications, and More

Although most people use AppWizard to create an executable program, it can make many
other kinds of projects. You choose File, New and then the Projects tab, as discussed at
the start of this chapter, but choose a different wizard from the list on the left of the
New dialog box, shown in Figure 1.1. The following are some of the other projects
AppWizard can create:

ATL COM AppWizard

. Custom AppWizard

. Database Project

. DevStudio Add-In Wizard

. Extended Stored Procedure AppWizard
. ISAPI Extension Wizard

. Makefile

. MFC ActiveX ControlWizard
« MFC AppWizard (dI1)

. Utility Project

. Win32 Application

. Win32 Console Application

. Win32 Dynamic Link Library

javascript:popUp('01uvc19.gif')
javascript:popUp('01uvc20.gif')
javascript:popUp('01uvc21.gif')

. Win32 Static Library

These projects are explained in the fol lowing sections.
ATL COM AppWizard

ATL is the Active Template Library, and it's used to write small ActiveX controls. It's
general ly used by developers who have already mastered writing MFC ActiveX
controls, though an MFC background is not required to learn ATL. Chapter 17
introduces important control concepts while demonstrating how to build an MFC
control; Chapter 21, "The Active Template Library,"” teaches you ATL.

Custom AppWizard

Perhaps you work in a large programming shop that builds many applications. Although
AppWizard saves a lot of time, your programmers may spend a day or two at the start of
each project pasting in your own boilerplate, which is material that is the same in every
one of your projects. You may find it well worth your time to build a Custom
AppWizard, a wizard of your very own that puts in your boilerplate as well as the
standard MFC material. After you have done this, your application type is added to the
list box on the left of the Projects tab of the New dialog box shown in Figure 1.1.
Creating and using Custom AppWizards is discussed in Chapter 25, "Achieving Reuse with
the Gallery and Your Own AppWizards."

Database Proj ect

If you have instal led the Enterprise Edition of Visual C++, you can create a database
project. This is discussed in Chapter 23, "SQL and the Enterprise Edition."

DevStudio Add-In Wizard

Add-ins are like macros that automate Developer Studio, but they are written in C++ or
another programming language; macros are written in VBScript. They use automation to
manipulate Developer Studio.

| SAPI Extension Wizard

ISAPI stands for Internet Server APl and refers to functions you can call to interact
with a running copy of Microsoft Internet Information Server, a World Wide Web
server program that serves out Web pages in response to client requests. You can use
this API to write DLLs used by programs that go far beyond browsing the Web to
sophisticated automatic information retrieval. This process is discussed in Chapter 18.

M akefile

If you want to create a project that is used with a different make utility than
Developer Studio, choose this wizard from the left list in the New Project Workspace
dialog box. No code is generated. If you don't know what a make utility is, don‘t worry -
this wizard is for those who prefer to use a standalone tool to replace one portion of
Developer Studio.

M FC ActiveX ControlWizard

ActiveX controls are controls you write that can be used on a Visual C++ dialog, a Visual
Basic form, or even a Web page. These controls are the 32-bit replacement for the VBX
controls many developers were using to achieve intuitive interfaces or to avoid
reinventing the wheel on every project. Chapter 17 guides you through building a
control with this wizard.

MFC AppWizard (DLL)

If you want to collect a number of functions into a DLL, and these functions use MFC
classes, choose this wizard. (If the functions don't use MFC, choose Win32 Dynamic Link
Library, discussed a little later in this section.) Building a DLL is covered in Chapter 28,
"Future Explorations." AppWizard generates code for you so you can get started.

Win32 Application

There are times when you want to create a Windows application in Visual C++ that does
not use MFC and does not start with the boilerplate code that AppWizard produces for
you. To create such an application, choose the Win32 Application wizard from the left
list in the Projects tab, fill in the name and folder for your project, and click OK. You
are not asked any questions; AppWizard simply creates a project file for you and opens
it. You have to create all your code from scratch and insert the files into the project.

Win32 Console Application

A console application 1ooks very much like a DOS application, though it runs in a resizable
window. (Console applications are 32-bit applications that won't run under DOS,
however.) It has a strictly character-based interface with cursor keys instead of mouse
movement. You use the Console APl and character-based 1/0 functions such as printf()
and scanf() to interact with the user. Some very rudimentary boilerplate code can be
generated for you, or you can have just an empty project. Chapter 28 discusses building
and using console applications.

Win32 Dynamic Link Library

If you plan to build a DLL that does not use MFC and does not need any boilerplate,
choose the Win32 Dynamic Link Library option instead of MFC AppWizard (dl1). You get
an empty project created right away with no questions.

Win32 Static Library

Although most code you reuse is gathered into a DLL, you may prefer to use a static
library because that means you don't have to distribute the DLL with your application.
Choose this wizard from the left list in the New Project Workspace dialog box to create
a project file into which you can add object files to be linked into a static library,
which is then linked into your applications.

Changing Your AppWizard Decisions

Running AppWizard is a one-time task. Assuming you are making a typical application,
you choose File, New; click the Projects tab; enter a name and folder; choose MFC
Application (exe); go through the six steps; create the application starter files; and then
never touch AppWizard again. However, what if you choose not to have online Help and
later realize you should have included it?

AppWizard, despite the name, isn't really magic. It pastes in bits and pieces of code you
need, and you can paste in those very same bits yourself. Here's how to find out what
you need to paste in.

First, create a project with the same options you used in creating the project whose
settings you want to change, and don't add any code to it. Second, in a different folder
create a project with the same name and all the same settings, except the one thing you
want to change (Context-Sensitive Help in this example). Compare the files, using
WinDiff, which comes with Visual C++. Now you know what bits and pieces you need to
add to your full-of-code project to implement the feature you forgot to ask AppWizard
for.

Some developers, if they discover their mistake soon enough, find it quicker to create a
new project with the desired features and then paste their own functions and resources
from the partially built project into the new empty one. It's only a matter of taste, but
after you go through either process for changing your mind, you probably will move a
little more slowly through those AppWizard dialog boxes.

Under standing AppWizard's Code

The code generated by AppWizard may not make sense to you right away, especially if
you haven't written a C++ program before. You don't need to understand this code in

order to write your own simple applications. Your programs will be better ones, though,
if you know what they are doing, so a quick tour of AppWizard's boilerplate code is a
good idea. You'l I see the core of an SDI application, an MDI application, and a dialog-
based application.

You'll need the starter applications FirstSDI, FirstMDI, and FirstDialog, so if you didn't
create them earlier, do so now. If you're unfamiliar with the Developer Studio
interface, glance through Appendix C to learn how to edit code and look at classes.

A Single Document I nterface Application

An SDI application has menus that the user uses to open one document at a time and
work with that document. This section presents the code that is generated when you
create an SDI application with no database or compound document support, with a
toolbar, a status bar, Help, 3D controls, source file comments, and with the MFC library
as a shared DLL - in other words, when you accept all the AppWizard defaults after
Step 1.

Five classes have been created for you. For the application FirstSDI, they are as
follows:

. CAboutDlg, adialog class for the About dialog box

« CFirstSDIApp, a CWinApp class for the entire application
. CFirstSDIDoc, a document class

. CFirstSDIView, a view class

. CMainFrame, a frame class

Dialog classes are discussed in Chapter 2, "Dialogs and Controls.” Document, view, and
frame classes are discussed in Chapter 4. The header file for CFirstSDIApp is shown in
Listing 1.1. The easiest way for you to see this code is to double-click on the classname,
CFirstDSIApp, in the ClassView pane. This will edit the header file for the class.

Listing 1.1 FirstSDI.h - Main Header Filefor the FirstSDI Application

/1l FirstSDI.h : main header file for the FIRSTSDI application

/1

#i f

'defi ned(AFX_FI RSTSDI _H CDF38D8A 8718 _11D0_B02C _0080C81A3AA2_ | NCLUDED)
#def i ne

AFX_FI RSTSDI _H CDF38D8A 8718 _11D0_B02C 0080C81A3AA2_ | NCLUDED

#if _MSC_VER >= 1000

#pragnma once
#endif // _MSC VER >= 1000
#ifndef _ AFRXWN H

#error include "stdafx.h' before including this file for PCH
#endi f
#i ncl ude "resource. h" /1 main synbol s
FEEEEEEErr i rrrrirrrr
/'l CFirst SDI App:
/'l See FirstSDI.cpp for the inplenentation of this class
11l
class CFirstSDI App : public CWnApp
{
publi c:

CFi rst SDI App() ;
/'l Overrides

/'l O assWzard generated virtual function overrides

I {{ AFX_VI RTUAL(CFi r st SDI App)

publi c:

virtual BOOL Initlnstance();

/1}}AFX_VI RTUAL
/1 1nplenmentation

/1 {{ AFX_NMSE CFi r st SDI App)

af x_msg voi d OnAppAbout () ;

/'l NOTE - The ClassWzard will add and renove nmenber

functions here.

/1 DO NOT EDIT what you see in these bl ocks of generated
code!
/1}} AFX_NMSG
DECLARE_MESSAGE_MAP()
1

FEEEEEEEE i rr i r i r b rr i rrrirrrrr
I'1 {{ AFX_| NSERT_LCOCATI ON} }

/'l Mcrosoft Devel oper Studio will insert additional declarations

/1l imrediately before the previous |ine.

#endi f
/1! defined(AFX FI RSTSDI H CDF38D8A 8718 11D0 B02C 0080C81A3AA2 | NCLUDED)

This code is confusing at the beginning. The #if(!defined) fol lowed by the very long
string (yours will be different) is a clever form of include guarding. You may have seen
a code snippet like this before:

#i fndef test_h

#i ncl ude "test.h"
#define test_h
#endi f

This guarantees that the file test.h will never be included more than once. Including
the same file more than once is quite likely in C++. Imagine that you define a class
called Employee, and it uses a class cal led Manager. If the header files for both
Employee and Manager include, for example, BigCorp.h, you will get error messages

from the compiler about "redefining" the symbols in BigCorp.h the second time it is
included.

There is a problem with this approach: If someone includes test.h but forgets to set
test_h, your code will include test.h the second time. The solution is to put the test and
the definition in the header file instead, so that test.h looks like this:

#i fndef test _h

the entire header file
#define test _h
#endi f

All AppWizard did was generate a more complicated variable name than test_h (this
wild name prevents problems when you have several files, in different folders and
projects, with the same name) and use a slightly different syntax to check the variable.
The #pragma once code is also designed to prevent multiple definitions if this file is ever
included twice.

The actual meat of the file is the definition of the class CFirstSDIApp. This class
inherits from CWinApp, an MFC class that provides most of the functionality you need.
AppWizard has generated some functions for this class that override the ones inherited
from the base class. The section of code that begins //Overrides is for virtual function
overrides. AppWizard generated the odd-looking comments that surround the
declaration of Initinstance(): ClassWizard will use these to simplify the job of adding
other overrides later, if they are necessary. The next section of code is a message map
and declares there is a function called OnAppAbout. You can learn all about message
maps in Chapter 3, "Messages and Commands."

AppWizard generated the code for the CFirstSDIApp constructor, Initinstance(), and
OnAppAbout() in the file firstsdi.cpp. Here's the constructor, which initializes a
CFirstSDIApp object as it is created:

CFi r st SDI App: : CFi rst SDI App()

{
// TODO add construction code here,

/'l Place all significant initialization in Initlnstance

}

This is a typical Microsoft constructor. Because constructors don't return values, there
IS No easy way to indicate that there has been a problem with the initialization. There
are several ways to deal with this. Microsoft's approach is a two-stage initialization,
with a separate initializing function so that construction does no initialization. For an
application, that function is called Initinstance(), shown in Listing 1.2.

Listing 1.2 CFirstSDIApp::Initlnstance()

BOOL CFirst SDI App: : I nitlnstance()

{

Af xEnabl eCont r ol Cont ai ner () ;

/1 Standard initialization

/1 1f you are not using these features and want to reduce the
si ze

/1 of your final executable, you should renove fromthe
fol |l ow ng
/'l the specific initialization routines you don't need.
#i fdef _AFXDLL
Enabl e3dControl s(); /1 Call this when using MFC in a
shared DLL
#el se
Enabl e3dControl sStatic(); // Call this when linking to MFC
statically
#endi f
/'l Change the registry key under which our settings are stored.
/'l You should nodify this string to be sonething appropri ate,
/'l such as the nane of your conpany or organi zation
Set Regi stryKey(_T("Local AppW zard- Generated Applications"));
LoadStdProfileSettings(); // Load standard INI file options

(i ncluding /1 MRU)
/'l Register the application's docunent tenplates. Docunent
tenpl at es

/'l serve as the connection between docunents, franme w ndows, and
Vi ews.
CSi ngl eDocTenpl at e* pDocTenpl at e;
pDocTenpl ate = new CSi ngl eDocTenpl at e(
| DR_MAI NFRAME,
RUNTI ME_CLASS(CFi r st SDI Doc) ,
RUNTI ME_CLASS(CMVai nFr ane) , /1 main SDI franme w ndow
RUNTI ME_CLASS(CFi r st SDI Vi ew)) ;
AddDocTenpl at e(pDocTenpl at e) ;
/'l Parse command |ine for standard shell commands, DDE, file open
CCommandLi nel nf o cndl nf o;
Par seComandLi ne(cndl nf 0) ;
/'l Di spatch commands specified on the command | i ne
if (!ProcessShel | Cormand(cndl nf o))
return FALSE
/'l The one and only wi ndow has been initialized, so show and
update it.
m_pMai nWhd- >Showw ndow(SW SHOW ;
m_pMai nWhd- >Updat eW ndow() ;
return TRUE;

Initinstance gets applications ready to go. This one starts by enabling the application to
contain ActiveX controls with a call to AfxEnableControlContainer() and then turns
on 3D controls. It then sets up the Registry key under which this application will be
registered. (The Registry is introduced in Chapter 7, "Persistence and File 1/0." If you've
never heard of it, you can ignore it for now.)

Initinstance() goes on to register single document templates, which is what makes this
an SDI application. Documents, views, frames, and document templates are all discussed
in Chapter 4.

Following the comment about parsing the command line, Initinstance() sets up an empty
CCommandLinelnfo object to hold any parameters that may have been passed to the
application when it was run, and it calls ParseCommandLine() to fill that. Finally, it
calls ProcessShellCommand() to do whatever those parameters requested. This means
your application can support command-line parameters to let users save time and effort,
without effort on your part. For example, if the user types at the command line
FirstSDI fooble, the application starts and opens the file called fooble. The command-
line parameters that ProcessShel lCommand() supports are the following:

Parameter Action

None Start app and open new file.

Filename Start app and open file.

/p filename Start app and print file to default printer.

/pt filename printer driver port |Start app and print file to the specified
printer.

/dde Start app and await DDE command.

/Automation Start app as an OLE automation server.

/Embedding Start app to edit an embedded OLE item.

If you would like to implement other behavior, make a class that inherits from
CCommandLinelnfo to hold the parsed command line; then override CWinApp::
ParseCommandLine() and CWinApp::ProcessShel ICommand() in your own App class.

TIP:: You may already know that you can invoke many Windows programs
from the command line; for example, typing Notepad blah.txt at a DOS
prompt will open blah.txt in Notepad. Other command line options work,
too, so typing Notepad /p blah.txt will open blah.txt in Notepad, print it,
and then close Notepad.

That's the end of Initinstance(). It returns TRUE to indicate that the rest of the
application should now run.

The message map in the header file indicated that the function OnAppAbout() handles a
message. Which one? Here's the message map from the source file:

BEG N_MESSAGE_MAP(CFi r st SDI App, CW nApp)

I 1 {{ AFX_NMSG_MAP(CFi r st SDI App)
ON_COVMVAND(| D_APP_ABQUT, OnAppAbout)
/'l NOTE - The C assWzard will add and renbve mappi ng nacros
her e.
/1 DO NOT EDIT what you see in these bl ocks of generated
code!
/1}} AFX_MSG_NAP
/1 Standard fil e-based docunent conmands
ON_COVMAND(| D_FI LE_NEW CW nApp: : OnFi | eNew)
ON_COMVAND(I D_FI LE_OPEN, CW nApp: : OnFi | eOpen)
/'l Standard print setup conmmand
ON_COMVAND(I D_FI LE_PRI NT_SETUP, CW nApp: : OnFi | ePri nt Set up)
END_MESSAGE_MAP()

This message map catches commands from menus, as discussed in Chapter 3. When the user
chooses Help About, CFirstSDIApp::OnAppAbout() will be called. When the user chooses
File New, File Open, or File Print Setup, functions from CWinApp will handle that work
for you. (You would override those functions if you wanted to do something special for
those menu choices.) OnAppAbout() looks like this:

voi d CFirst SDI App: : OnAppAbout ()

{
CAbout DI g about Dl g;

about DI g. DoModal () ;
}

This code declares an object that is an instance of CAboutDIg, and calls its DoModal|()
function to display the dialog onscreen. (Dialog classes and the DoModal() function are
both covered in Chapter 2.) There is no need to handle OK or Cancel in any special way -
this is just an About box.

Other Files

If you selected Context-Sensitive Help, AppWizard generates an .HPJ file and a number
of .RTF files to give some context-sensitive help. These files are discussed in Chapter 11
in the "Components of the Help System" section.

AppWizard also generates a README.TXT file that explains what all the other files
are and what classes have been created. Read this file if all the similar filenames
become confusing.

There are also a number of project files used to hold your settings and options, to speed
build time by saving partial results, and to keep information about all your variables
and functions. These files have extensions like .ncb, .aps, .dsw, and so on. You can safely
ignore these files because you will not be using them directly.

Under standing a M ultiple Document I nterface

Application

A multiple document interface application also has menus, and it enables the user to
have more than one document open at once. This section presents the code that is
generated when you choose an MDI application with no database or compound document
support, but instead with a toolbar, a status bar, Help, 3D controls, source file
comments, and the MFC library as a shared DLL. As with the SDI application, these are
the defaults after Step 1. The focus here is on what differs from the SDI application in
the previous section.

Five classes have been created for you. For the application FirstMDI, they are
. CAboutDlg, adialog class for the About dialog box
. CFirstMDIApp, a CWinApp class for the entire application
. CFirstMDIDoc, a document class
. CFirstMDIView, a view class
. CMainFrame, a frame class
The App class header is shown in Listing 1.3.

Listing 1.3 FirstMDI.h - Main Header Filefor the FirstM DI Application

/'l FirstMDl.h : main header file for the FIRSTMDI application
Il
#if
I'def i ned(AFX_FI RSTMDI _H CDF38DOE_8718_11D0_B02C _0080C81A3AA2__ | NCLUDED)
#def i ne
AFX_FI RSTMDI _H CDF38DOE_8718_11D0_B02C _0080C81A3AA2__ | NCLUDED _
#if _MSC_VER >= 1000
#pragnma once
#endif // _MSC VER >= 1000
#ifndef _ AFRXWN H

#error include "stdafx.h' before including this file for PCH
#endi f
#i ncl ude "resource. h" /1 main synbol s
FEEEEEEEEr i rrrrirrrrn
/'l CFirstMDI App:
/'l See FirstMDl.cpp for the inplenentation of this class
Il
class CFirst VDI App : public CW nApp
{
publ i c:

CFi rst MDI App() ;

/'l Overrides

/'l O assWzard generated virtual function overrides

/1 {{ AFX_VI RTUAL(CFi r st MDI App)

publi c:

virtual BOOL Initlnstance();

/1}} AFX_VI RTUAL
/1 1nplenmentation

/1 {{ AFX_MSE CFi r st MDI App)

af x_msg voi d OnAppAbout () ;

/'l NOTE - The ClassWzard will add and renove nenber

functions here.

/1 DO NOT EDIT what you see in these bl ocks of generated
code !
/1}} AFX_NMSG
DECLARE_MESSAGE_MAP()
1

FEEEEEEEE bbb rrrrr
I'1 {{ AFX_| NSERT_LCOCATI ON} }

/'l Mcrosoft Devel oper Studio will insert additional declarations

i medi atel y

/'l before the previous |ine.

#endi f
/ /' defined(AFX FI RSTMDI _H CDF38D9OE 8718 11D0 B02C 0080C81A3AA2 | NCLUDED)

How does this differ from FirstSDI.h? Only in the classnames. The constructor is also
the same as before. OnAppAbout() is just like the SDI version. How about Initinstance()?
Itisin Listing 1.4.

Listing 1.4 CFirstMDIApp::Initlnstance()

BOOL CFirst MDD App::Initlnstance()

{

Af xEnabl eCont r ol Cont ai ner () ;

/1 Standard initialization

/1 If you are not using these features and want to reduce the
Si ze

/1 of your final executable, you should renove fromthe
foll ow ng
/Il the specific initialization routines you don't need.
#i fdef _AFXDLL
Enabl e3dControl s(); /1 Call this when using MFC in a
shared DLL
#el se
Enabl e3dControl sStatic(); // Call this when linking to MFC
statically
#endi f
/'l Change the registry key under which your settings are stored.
/'l You should nodify this string to be sonething appropriate,
/'l such as the nane of your conpany or organization
Set Regi stryKey(_T("Local AppW zard- Generated Applications"));
LoadSt dProfil eSettings(); // Load standard INI file options

(i ncluding /1 MRU)
/'l Register the application's docunent tenplates. Docunent
tenpl at es
/'l serve as the connection between docunents, franme w ndows, and
Vi ews.
Cwul ti DocTenpl at e* pDocTenpl at e;
pDocTenpl ate = new CMul ti DocTenpl at e(
| DR_FI RSTMTYPE,
RUNTI ME_CLASS(CFi r st MDI Doc) ,
RUNTI ME_CLASS(CChi | dFrame), // custom MDI child frane
RUNTI ME_CLASS(CFi r st MDI Vi ew)) ;
AddDocTenpl at e(pDocTenpl at e) ;
/1l create main NMDI Frane w ndow
CMai nFranme* pMai nFrame = new CMai nFr ane;
i f (!pMai nFrane->LoadFrane(| DR_MAI NFRAME))
return FALSE;
m _pMai nWhd = pMai nFr ane;
/'l Parse command |ine for standard shell commands, DDE, file open
CCommandLi nel nf o cndl nf o;
Par seCommandLi ne(cndl nf 0) ;
/'l Di spatch commands specified on the command | i ne
if (!ProcessShel | Coomand(cndl nf o))
return FALSE;
/1 The main wi ndow has been initialized, so show and update it.
pMai nFr ame- >ShowwW ndow(m_nCndShow) ;
pMai nFr ame- >Updat eW ndow() ;
return TRUE;

What's different here? Using WinDiff can help. WinDiff is a tool that comes with Visual
C++ and is reached from the Tools menu. (If WinDiff isn't on your Tools menu, see the
"Tools" section of Appendix C.) Using WinDiff to compare the FirstSDI and FirstMDI
versions of Initinstance() confirms that, other than the classnames, the differences are

. The MDI application sets up a CMultiDocTemplate and the SDI application sets up
a CSingleDocTemplate, as discussed in Chapter 4.

. The MDI application sets up a mainframe window and then shows it; the SDI
application does not.

This shows a major advantage of the Document/View paradigm: It enables an enormous
design decision to affect only a small amount of the code in your project and hides that
decision as much as possible.

Under standing the Components of a Dialog-Based
Application

Dialog applications are much simpler than SDI and MDI applications. Create one called
FirstDialog, with an About box, no Help, 3D controls, no automation, ActiveX control
support, no sockets, source file comments, and MFC as a shared DLL. In other words,
accept all the default options.

Three classes have been created for you for the application called FirstMDI:
. CAboutDlg, a dialog class for the About dialog box
. CFirstDialogApp, a CWinApp class for the entire application
. CFirstDialogDlIg, a dialog class for the entire application

The dialog classes are the subject of Chapter 2. Listing 1.5 shows the header file for
CFirstDialogApp.

Listing 1.5 dialogl6.h - Main Header File

/'l FirstDialog.h : main header file for the FIRSTDI ALOG application
Il
#if
I'defi ned(AFX_FI RSTDI ALOG H CDF38DB4_8718 11D0_B02C _0080C81A3AA2__ | NCLUDED)
#defi ne
AFX_FI RSTDI ALOG H CDF38DB4_8718_11D0_B02C _0080C81A3AA2__ | NCLUDED _
#if _MSC_VER >= 1000
#pragnma once
#endi f // _MSC VER >= 1000
#ifndef _ AFXWNH

#error include “stdafx.h' before including this file for PCH
#endi f
#i ncl ude "resource. h" /1l main synbols
FEEEEEEE i rrrrrrrrr
/'l CFirstDi al ogApp:
/'l See FirstDialog.cpp for the inplenentation of this class
Il
class CFirstD al ogApp : public CWnApp
{
publi c:

CFi rst Di al ogApp();
/'l Overrides

/'l ClassWzard generated virtual function overrides

/1 {{AFX_VI RTUAL(CFi r st Di al ogApp)

public:

virtual BOCL Initlnstance();

/'1}} AFX_VI RTUAL
/1 1 nplenentation

[{{ AFX_MSE CFi r st Di al ogApp)

/'l NOTE - The O assWzard will add and renove nenber
functions here.
/1 DO NOT EDI T what you see in these bl ocks of generated

code !
/1}} AFX_NMSG
DECLARE_MESSAGE_MAP()
1
FEEEEEEEE i r bbb rrrrr
I'1 {{ AFX_| NSERT_LCOCATI ON} }
/'l Mcrosoft Devel oper Studio will insert additional declarations
i medi atel y
/'l before the previous |ine.
#endi f //
' def i ned(AFX_FI RSTDI ALOG H__CDF38DB4_8718_11D0_B02C_0080C81A3AA2

- | NCLUDED)

CFirstDialogApp inherits from CWinApp, which provides most of the functionality.
CWinApp has a constructor, which does nothing, as did the SDI and MDI constructors
earlier in this chapter, and it overrides the virtual function Initinstance(), as shown in
Listing 1.6.

Listing 1.6 FirstDialog.cpp - CDialogl6App::Initlnstance()

BOOL CFirstDi al ogApp: :Initlnstance()

{

Af xEnabl eCont r ol Cont ai ner () ;

/1 Standard initialization

/1 If you are not using these features and want to reduce the
Si ze

/1 of your final executable, you should renove fromthe
foll ow ng
/Il the specific initialization routines you don't need.
#i fdef _AFXDLL
Enabl e3dControl s(); /1 Call this when using MFC in a
shared DLL
#el se
Enabl e3dControl sStatic(); // Call this when linking to MFC
statically
#endi f
CFirstDi al ogDl g dl g;
m _pMai nWhd = &dl g;
I nt nResponse = dl g. DoModal ();
I f (nResponse == | DOK)
{
/1 TODO Pl ace code here to handle when the dialog is
/1 dismssed with OK

}

el se if (nResponse == | DCANCEL)

{
/1 TODO Pl ace code here to handle when the dialog is
/1 dismssed with Cancel

}

/'l Because the dialog has been closed, return FALSE so that you
exit the

/1
punp

}

appl i cati on,

return FALSE

rather than start the application's nessage

This enables 3D controls, because you asked for them, and then puts up the dialog box
that is the entire application. To do that, the function declares an instance of
CDialogl6Dlg, dlg, and then calls the DoModal() function of the dialog, which displays
the dialog box onscreen and returns IDOK if the user clicks OK, or IDCANCEL if the
user clicks Cancel. (This process is discussed further in Chapter 2.) It's up to you to make
that dialog box actually do something. Finally, Initinstance() returns FALSE because
this is a dialog-based application and when the dialog box is closed, the application is
ended. As you saw earlier for the SDI and MDI applications, Initinstance() usually
returns TRUE to mean "everything is fine - run the rest of the application” or FALSE to
mean "something went wrong while initializing." Because there is no "rest of the
application," dialog-based apps always return FALSE from their Initinstance().

Reviewing AppWizard Decisions and This Chapter

AppWizard asks a lot of questions and starts you down a lot of roads at once. This
chapter explains Initinstance and shows some of the code affected by the very first
AppWizard decision: whether to have AppWizard generate a dialog-based, SDI, or MDI
application. Most of the other AppWizard decisions are about topics that take an entire
chapter. The following table summarizes those choices and where you can learn more:

Step |Decision

0

MFC DLL or
non-MFC DLL
OCX Control

Console
Application
Custom
AppWizards
ISAPI Extension

Language Support
Database Support
Compound

Chapter
28, Future Explorations

17, Building an ActiveX
Control
28, Future Explorations

25, Achieving Reuse with the
Gallery and Your Own AppWizard
18, Sockets, MAPI, and the
Internet Wizard

28, Future Explorations

22, Database Access

14, Building an ActiveX

Dialog

Yes

Document Container |Container Application
3 Compound Document |15, Building an ActiveX
Mini-Server Server Application
3 Compound Document |15, Building an ActiveX
Full Server Server Application
3 Compound Files 14, Building an ActiveX
Container Application
3 Automation 16, Building an Automation Yes
Server
3 Using ActiveX 17, Building an ActiveX Yes
Controls Control
Docking Toolbar 9, Status Bars and Toolbars
Status Bar 9, Status Bars and Toolbars
Printing and 6, Printing and Print
Print Preview Preview
4 Context-Sensitive 11, Help Yes
Help
3D Controls -- Yes
MAPI 18, Sockets, MAPI,
and the Internet
4 Windows Sockets 18, Sockets, MAPI, Yes
and the Internet
4 Files in MRU list --
5 Comments in code -- Yes
5 MFC library - Yes
6 Base class for View 4, Documents and Views

Because some of these questions are not applicable for dialog-based applications, this
table has a Dialog column Yes that indicates this decision applies to dialog-based
applications, too. An entry of -- in the Chapter column means that this decision does not
really warrant discussion. These topics get a sentence or two in passing in this chapter
or elsewhere.

By now you know how to create applications that don't do much of anything. To make
them do something, you need menus or dialog controls that give commands, and you need
other dialog controls that gather more information. These are the subject of the next

chapter, Chapter 2, "Dialogs and Controls."

+= Previous Chapter =» MNext Chapter 2 Contents

© Copyright Macmillan Computer Publishing. All rights reserved.

oue
Special Edition Using Visual C++ 6

+= Previous Chapter =» MNext Chapter 2 Contents

-2

Dialogs and Controls

. Understanding Dialog Boxes

. Creating a Dialog Box Resource
o Defining Dialog Box and Control IDs
o Creating the Sample Dialog Box

. Writing a Dialog Box Class

. Using the Dialog Box Class
o Arranging to Display the Dialog Box
o Behind the Scenes
o Using a List Box Control
o Using Radio Buttons

Under standing Dialog Boxes

Windows programs have a graphical user interface. In the days of DOS, the program
could simply print a prompt onscreen and direct the user to enter whatever value the
program needed. With Windows, however, getting data from the user is not as simple, and
most user input is obtained from dialog boxes. For example, a user can give the
application details about a request by typing in edit boxes, choosing from list boxes,
selecting radio buttons, checking or unchecking check boxes, and more. These
components of a dialog box are called controls.

Chances are that your Windows application will have several dialog boxes, each
designed to retrieve a specific type of information from your user. For each dialog box

that appears onscreen, there are two entities you need to develop: a dialog box resource
and a dialog box class.

The dialog box resource is used to draw the dialog box and its controls onscreen. The
class holds the values of the dialog box, and it is a member function of the class that
causes the dialog box to be drawn onscreen. They work together to achieve the overall
effect: making communication with the program easier for your user.

You build a dialog box resource with the resource editor, adding controls to it and
arranging them to make the control easy to use. Class Wizard then helps you to create
a dialog box class, typically derived from the MFC class CDialog, and to connect the
resource to the class. Usually, each control on the dialog box resource corresponds to
one member variable in the class. To display the dialog box, you call a member function
of the class. To set the control values to defaults before displaying the dialog box, or
to determine the values of the controls after the user is finished with the box, you use
the member variables of the class.

Creating a Dialog Box Resour ce

The first step in adding a dialog box to your MFC application is creating the dialog box
resource, which acts as a sort of template for Windows. When Windows sees the dialog
box resource in your program, it uses the commands in the resource to construct the
dialog box for you.

In this chapter you learn to work with dialog boxes by adding one to a simple
application. Create an SDI application just as you did in Chapter 1, "Building Your First
Windows Application," calling it simply SDI. You will create a dialog box resource and a
dialog box class for the application, write code to display the dialog box, and write code
to use the values entered by the user.

To create a dialog box resource, first open the application. Choose Insert, Resource from
Developer Studio's menu bar. The Insert Resource dialog box, shown in Figure 2.1,
appears. Double-click Dialog in the Resource Type box. The dialog box editor appears, as
shown in Figure 2.2.

Bring up the Properties dialog box for the new dialog box by choosing View, Properties.
Change the caption to Sample Dialog, as shown in Figure 2.3. You'l I be using the
Properties dialog box quite a lot as you work on this dialog box resource, so pin it to the
screen by clicking the pushpin in the upper-left corner.

FIG. 2.1 Double-click Dialog on the Insert Resource dialog box.

FIG. 2.2 A brand new dialog box resource has a title, an OK button, and a Cancel button.

javascript:popUp('02uvc01.gif')
javascript:popUp('02uvc02.gif')

FIG. 2.3 Use the Dialog Properties dialog box to change the title of the new dialog box.

The control palette shown at the far right of Figure 2.2 is used to add controls to the
dialog box resource. Dialog boxes are built and changed with a very visual WYSIWYG
interface. If you need a button on your dialog box, you grab one from the control
palette, drop it where you want it, and change the caption from Buttonl to Lookup, or
Connect, or whatever you want the button to read. All the familiar Windows controls
are available for your dialog boxes:

. Static text. Not really a control, this is used to label other controls such as edit
boxes.

. Edit box. Single line or multiline, this is a place for users to type strings or
numbers as input to the program. Read-only edit boxes are used to display text.

. Button. Every dialog box starts with OK and Cancel buttons, but you can add as
many of your own as you want.

. Check box. You use this control to set options on or off; each option can be
selected or deselected independently.

. Radio button. You use this to select only one of a number of related options.
Selecting one button deselects the rest.

. List box. You use this box type to select one item from a list hardcoded into the
dialog box or filled in by the program as the dialog box is created. The user
cannot type in the selection area.

. Combo box. A combination of an edit box and a list box, this control enables users
to select from a list or type their response, if the one they want isn't on the list.

The sample application in this chapter is going to have a dialog box with a selection of
controls on it, to demonstrate the way they are used.

Defining Dialog Box and Control IDs

Because dialog boxes are often unique to an application (with the exception of the
common dialog boxes), you almost always create your own IDs for both the dialog box
and the controls it contains. You can, if you want, accept the default IDs that the
dialog box editor creates for you. However, these IDs are generic (for example,

IDD _DIALOGL, IDC _EDIT1, IDC_RADIO1, and so on), so you'l | probably want to change
them to something more specific. In any case, as you can tell from the default IDs, a
dialog box's ID usually begins with the prefix IDD, and control IDs usually begin with
the prefix IDC. You change these IDs in the Properties dialog box: Click the control (or

javascript:popUp('02uvc03.gif')

the dialog box background to select the entire background), and choose View,
Properties unless the Properties dialog box is already pinned in place; then change the
resource ID to a descriptive name that starts with IDD for a dialog and IDC for a
control.

Creating the Sample Dialog Box

Click the Edit box button on the control palette, and then click in the upper-left
corner of the dialog box to place the edit box. If necessary, grab a moving handle and
move it until it is in approximately the same place as the edit box in Figure 2.4. Normally,
you would change the ID from Editl, but for this sample leave it unchanged.

FIG. 2.4 You can build a simple dialog box quickly in the resource editor.

TIP: If you aren't sure which control palette button inserts an edit box (or
any other type of control), just hold the pointer still over one of the
buttons for a short time. A ToolTip will appear, reminding you of the name
of the control associated with the button. Move the pointer from button to
button until you find the one for the edit box.

Add a check box and three radio buttons to the dialog box so that it resembles Figure
2.4. Change the captions on the radio buttons to One, Two, and Three. To align all
these controls, click one, and then while holding down the Ctrl key, click each of the
rest of them. Choose Layout, Align, Left, and if necessary drag the stack of controls
over with the mouse while they are all selected. Then choose Layout, Space Evenly,
Down, to adjust the vertical spacing.

TIP: The commands on the Layout menu are also on the Dialog toolbar,
which appears at the bottom of your screen while you are using the
resource editor. The toolbar symbols are repeated on the menu to help you
learn which button is associated with each menu item.

Click the One radio button again and bring up the Properties dialog box. Select the
Group check box. This indicates that this is the first of a group of buttons. When you
select a radio button, all the other buttons in the group are deselected.

Add a list box to the dialog box, to the right of the radio buttons, and resize it to match
Figure 2.4. With the list box highlighted, choose View, Properties to bring up the
Properties dialog box if it is not still pinned in place. Select the Styles tab and make
sure that the Sort box is not selected. When this box is selected, the strings in your list
box are automatically presented in alphabetical order. For this application, they

javascript:popUp('02uvc04.gif')

should be presented in the order that they are added.

Writing a Dialog Box Class

When the resource is complete, bring up ClassWizard by choosing View, ClassWizard.
ClassWizard recognizes that this new dialog box resource does not have a class
associated with it and offers to build one for you, as shown in Figure 2.5. Leave the
Create a New Class radio button selected, and click OK. The New Class dialog box
appears, as shown in Figure 2.6. Fill in the classname as CSdiDialog and click OK.
ClassWizard creates a new class, prepares the source file (SdiDialog.cpp) and header file
(SdiDialog.h), and adds them to your project.

FIG. 2.5 ClassWizard makes sure you don't forget to create a class to go with your new dialog box
resource.

You connect the dialog box resources to your code with the Member Variables tab of
ClassWizard, shown in Figure 2.7. Click IDC_CHECK1 and then click the Add Variable
button. This brings up the Add Member Variable dialog box, shown in Figure 2.8.

FIG. 2.6 Creating a dialog box class is simple with ClassWizard.

FIG. 2.7 The Member Variables tab of ClassWizard connects dialog box controls to dialog box class
member variables.

A member variable in the new dialog box class can be connected to a control's value or
to the control. This sample demonstrates both kinds of connection. For IDC_CHECK1,
fill in the variable name as m_check, and make sure that the Category drop-down box
has Value selected. IT you open the Variable Type drop-down box, you will see that the
only possible choice is BOOL. Because a check box can be either selected or not selected,
it can be connected only to a BOOL variable, which holds the value TRUE or FALSE.
Click OK to complete the connection.

FIG. 2.8 You choose the name for the member variable associated with each control.

Here are the data types that go with each control type:

. Edit box. Usually a string but also can be other data types, including int, float,
and long

. Check box. int

. Radio button. int

javascript:popUp('02uvc05.gif')
javascript:popUp('02uvc06.gif')
javascript:popUp('02uvc07.gif')
javascript:popUp('02uvc08.gif')

. List box. String
. Combo box. String
. Scrollbar. int

Connect IDC_EDIT1 in the same way, to a member variable called m_edit of type CString
as a Value. Connect IDC_LIST1 as a Control to a member variable called m_listbox of
type CListBox. Connect IDC_RADIO 1, the first of the group of radio buttons, as a
Value to an int member variable called m_radio.

After you click OK to add the variable, ClassWizard offers, for some kinds of variables,
the capability to validate the user's data entry. For example, when an edit control is
selected, a field under the variables list al lows you to set the maximum number of
characters the user can enter into the edit box (see Figure 2.9). Set it to 10 for m_edit. If
the edit box is connected to a number (int or float), this area of ClassWizard is used to
specify minimum or maximum values for the number entered by the user. The error
messages asking the user to try again are generated automatically by MFC with no
work on your part.

FIG. 2.9 Enter a number in the Maximum Characters field to limit the length of a user's entry.

Using the Dialog Box Class

Now that you have your dialog box resource built and your dialog box class written,
you can create objects of that class within your program and display the associated
dialog box element. The first step is to decide what will cause the dialog box to display.
Typically, it is a menu choice, but because adding menu items and connecting them to
code are not covered until Chapter 8, "Building a Complete Application: ShowString,"
you can simply have the dialog box display when the application starts running. To
display the dialog box, you call the DoModal() member function of the dialog box class.

Modeless Dialog Boxes

Most of the dialog boxes you will code will be modal dialog boxes. A modal
dialog box is on top of all the other windows in the application: The user
must deal with the dialog box and then close it before going on to other
work. An example of this is the dialog box that comes up when the user
chooses File, Open in any Windows application.

A modeless dialog box enables the user to click the underlying application
and do some other work and then return to the dialog box. An example of
this is the dialog box that comes up when the user chooses Edit, Find in many

javascript:popUp('02uvc09.gif')

Windows applications.

Displaying a modeless dialog box is more difficult than displaying a modal
one. The dialog box object, the instance of the dialog box class, must be
managed carefully. Typically, it is created with new and destroyed with
delete when the user closes the dialog box with Cancel or OK. You have to
override a number of functions within the dialog box class. In short, you
should be familiar and comfortable with modal dialog boxes before you
attempt to use a modeless dialog box. When you're ready, look at the Visual
C++ sample called MODELESS that comes with Developer Studio. The
fastest way to open this sample is by searching for MODELESS in
InfoViewer. Searching in InfoViewer is covered in Appendix C, "The Visual
Studio User Interface, Menus, and Toolbars."

Arranging to Display the Dialog Box

Select the ClassView in the project workspace pane, expand the SDI Classes item, and
then expand CSdiApp. Double-click the Initinstance() member function. This function is
called whenever the application starts. Scroll to the top of the file, and after the
other #include statements, add this directive:

#i ncl ude "sdi di al og. h"

This ensures that the compiler knows what a CSdiDialog class is when it compiles this
file.

Double-click Initinstance() in the ClassView again to bring the cursor to the beginning
of the function. Scroll down to the end of the function, and just before the return at
the end of the function, add the lines in Listing 2.1.

Listing 2.1 SDI.CPP - Linesto Add at the End of CSdiApp::Initlnstance()

CSdi Di al og dl g;
dl g. m check = TRUE
dlg.medit = "hi there";

CString nsg;
i f (dl g. Dovbdal () == | DOK)
{

msg = "You clicked OK
}
el se
{

nmsg = "You cancel | ed.
}

nmsg += "Edit box is:

nmsg += dlg. medit;

Af xMessageBox (nsg) ;

Entering Code

As you enter code into this file, you may want to take advantage of a
feature that makes its debut in this version of Visual C++: Autocompletion.
Covered in more detail in Appendix C, Autocompletion saves you the trouble
of remembering all the member variables and functions of a class. If you
type dlg. and then pause, a window will appear, listing all the member
variables and functions of the class CSdiDialog, including those it
inherited from its base class. If you start to type the variable you want -
for example, typing m_--the list will scroll to variables starting withm_.
Use the arrow keys to select the one you want, and press Space to select it
and continue typing code. You are sure to find this feature a great time
saver. If the occasional pause as you type bothers you, Autocompletion can
be turned off by choosing Tools, Options and clicking the Editor tab.
Deselect the parts of Autocompletion you no longer want.

This code first creates an instance of the dialog box class. It sets the check box and edit
box to simple default values. (The list box and radio buttons are a little more complex
and are added later in this chapter, in "Using a List Box Control" and "Using Radio
Buttons.") The dialog box displays onscreen by calling its DoModal() function, which
returns a number represented by IDOK if the user clicks OK and IDCANCEL if the user
clicks Cancel. The code then builds a message and displays it with the AfxMessageBox
function.

NOTE: The CString class has a number of useful member functions and
operator overloads. As you see here, the += operator tacks characters onto
the end of a string. For more about the CString class, consult Appendix F,
"Useful Classes."

Build the project by choosing Build, Build or by clicking the Build button on the Build
toolbar. Run the application by choosing Build, Execute or by clicking the Execute
Program button on the Build toolbar. You will see that the dialog box displays with
the default values you just coded, as shown in Figure 2.10. Change them, and click OK.
You should get a message box telling you what you did, such as the one in Figure 2.11.
Now the program sits there, ready to go, but because there is no more for it to do, you
can close it by choosing File, Exit or by clicking the - in the top-right corner.

FIG. 2.10 Your application displays the dialog box when it first runs.
FIG. 2.11 After you click OK, the application echoes the contents of the edit control.

Run it again, change the contents of the edit box, and this time click Cancel on the
dialog box. Notice in Figure 2.12 that the edit box is reported as still hi there. This is
because MFC does not copy the control values into the member variables when the user
clicks Cancel. Again, just close the application after the dialog box is gone.

FIG. 2.12 When you click Cancel, the application ignores any changes you made.

Be sure to try entering more characters into the edit box than the 10 you specified with
ClassWizard. You will find you cannot type more than 10 characters - the system just
beeps at you. I you try to paste in something longer than 10 characters, only the first
10 characters appear in the edit box.

Behind the Scenes

You may be wondering what's going on here. When you click OK on the dialog box, MFC
arranges for a function called OnOK() to be called. This function is inherited from
CDialog, the base class for CSdiDialog. Among other things, it calls a function called
DoDataExchange(), which ClassWizard wrote for you. Here's how it looks at the
moment:

voi d CSdi Di al og: : DoDat aExchange(CDat aExchange* pDX)

{
CDi al og: : DoDat aExchange(pDX) ;
I 1 {{ AFX_DATA MAP(CSdi D al og)
DDX _Control (pDX, I DC_LIST1, mli stbox);
DDX_Check(pDX, | DC_CHECK1l, m check);
DDX_Text (pDX, IDC EDI T1l, medit);
DDV_MaxChar s(pDX, medit, 10);
DDX_Radi o(pDX, | DC_RADI O1, mradi0);
/1}}AFX_DATA NAP

}

The functions with names that start with DDX all perform data exchange: Their second
parameter is the resource ID of a control, and the third parameter is a member variable
in this class. This is the way that ClassWizard connected the controls to member
variables - by generating this code for you. Remember that ClassWizard also added
these variables to the dialog box class by generating code in the header file that
declares them.

There are 34 functions whose names begin with DDX: one for each type of data that
might be exchanged between a dialog box and a class. Each has the type in its name. For
example, DDX_Check is used to connect a check box to a BOOL member variable.

javascript:popUp('02uvc10.gif')
javascript:popUp('02uvc11.gif')
javascript:popUp('02uvc12.gif')

DDX_Text is used to connect an edit box to a CString member variable. ClassWizard
chooses the right function name when you make the connection.

NOTE: Some DDX functions are not generated by ClassWizard. For example,
when you connect a list box as a Value, your only choice for type is
CString. Choosing that causes ClassWizard to generate a call to
DDX_LBString(), which connects the selected string in the list box to a
CString member variable. There are cases when the integer index into the
list box might be more useful, and there is a DDX_LBIndex() function that
performs that exchange. You can add code to DoDataExchange(), outside
the special ClassWizard comments, to make this connection. If you do so,
remember to add the member variable to the class yourself. You can find
the full list of DDX functions in the online documentation. n

Functions with names that start with DDV perform data validation. ClassWizard adds a
call to DDV_MaxChars right after the call to DDX_Text that filled m_edit with the
contents of IDC_EDIT1. The second parameter of the call is the member variable name,
and the third is the limit: how many characters can be in the string. If a user ever
managed to get extra characters into a length-validated string, the DDV_MaxChars()
function contains code that puts up a warning box and gets the user to try again. You
can just set the limit and count on its being enforced.

Using a List Box Control

Dealing with the list box is more difficult because only while the dialog box is onscreen
is the list box control a real window. You cannot call a member function of the list box
control class unless the dialog box is onscreen. (This is true of any control that you
access as a control rather than as a value.) This means that you must initialize the list
box (fill it with strings) and use it (determine which string is selected) in functions that
are called by MFC while the dialog box is onscreen.

When it is time to initialize the dialog box, just before it displays onscreen, a CDialog
function named OnlInitDialog() is called. Although the full explanation of what you
are about to do will have to wait until Chapter 3, "Messages and Commands,” fol low
the upcoming steps to add the function to your class.

In ClassView, right-click CSdiDialog and choose Add Windows Message Handler. The
New Windows Message and Event Handlers dialog box shown in Figure 2.13 appears.
Choose WM_INITDIALOG from the list and click Add Handler. The message name
disappears from the left list and appears in the right list. Click it and then click Edit
Existing to see the code.

FIG. 2.13 The New Windows Message and Event Handlers dialog box helps you override

javascript:popUp('02uvc13.gif')

OnlinitDialog().

Remove the TODO comment and add calls to the member functions of the list box so that
the function is as shown in Listing 2.2.

Listing 2.2 SDIDIALOG.CPP - CSdiDialog::OnlnitDialog()

BOOL CSdi Di al og: : OnlnitDi al og()

{
CDi al og: : Onl ni t Di al og();

m | i stbox. AddString("First String");

m | i st box. AddString(" Second String");

m | i st box. AddString("Yet Another String");
m | i stbox. AddString("String Nunber Four");
m | i st box. Set Cur Sel (2);

return TRUE, // return TRUE unless you set the focus to a
contr ol
/| EXCEPTI ON: OCX Property Pages should return
FALSE

}

This function starts by calling the base class version of OnlnitDialog() to do whatever
behind-the-scenes work MFC does when dialog boxes are initialized. Then it calls the
list box member function AddString() which, as you can probably guess, adds a string to
the list box. The strings will be displayed to the user in the order that they were added
with AddString(). The final call is to SetCurSel(), which sets the current selection. As
you see when you run this program, the index you pass to SetCurSel() is zero based,
which means that item 2 is the third in the list, counting 0, 1, 2.

NOTE: Usually, the strings of a list box are not hardcoded like this. To set
them from elsewhere in your program, you have to add a CStringArray
member variable to the dialog box class and a function to add strings to
that array. The OninitDialog() would use the array to fill the list box.
Alternatively, you can use another one of MFC's col lection classes or even
fill the list box from a database. For more about CStringArray and other
MFC collection classes, consult Appendix F. Database programming is
covered in Chapter 22, "Database Access."

In order to have the message box display some indication of what was selected in the list
box, you have to add another member variable to the dialog box class. This member
variable will be set as the dialog box closes and can be accessed after it is closed. In
ClassView, right-click CSdiDialog and choose Add Member Variable. Fill in the dialog
box, as shown in Figure 2.14, and then click OK. This adds the declaration of the CString

called m_selected to the header file for you. (If the list box allowed multiple
selections, you would have to use a CStringArray to hold the list of selected items.)
Strictly speaking, the variable should be private, and you should either add a public
accessor function or make CSdiApp::Initinstance() a friend function to CSdiDialog in
order to be truly object oriented. Here you take an excusable shortcut. The general
rule still holds: Member variables should be private.

FIG. 2.14 Add a CString to your class to hold the string that was selected in the list box.

TIP: Object-oriented concepts (such as accessor functions), friend functions,
and the reasoning behind private member variables are discussed in Appendix
A, "C++ Review and Object-Oriented Concepts."”

This new member variable is used to hold the string that the user selected. It is set when
the user clicks OK or Cancel. To add a function that is called when the user clicks OK,
follow these steps:

1. Right-click CSdiDialog in the ClassView, and choose Add Windows Message
Handler.

2. In the New Windows Message and Event Handlers dialog box, shown in Figure
2.15, highlight ID_OK in the list box at the lower right, labeled Class or Object
to Handle.

FIG. 2.15 Add a function to handle the user's clicking OK on your dialog box.

3. In the far right list box, select BN_CLICKED. You are adding a function to
handle the user's clicking the OK button once.

4. Click the Add Handler button. The Add Member Function dialog box shown in
Figure 2.16 appears.

FIG. 2.16 ClassWizard suggests a very good name for this event handler: Do not change it.

5. Accept the suggested name, OnOK(), by clicking OK.

6. Click the Edit Existing button to edit the code, and add lines as shown in
Listing 2.3.

Listing 2.3 SDIDIALOG.CPP - CXdiDialog::OnOK()

voi d CSdi Di al og: : OnOK()

javascript:popUp('02uvc14.gif')
javascript:popUp('02uvc15.gif')
javascript:popUp('02uvc16.gif')

int index = mlistbox. GetCurSel ();
if (index !'= LB _ERR

{
m | i st box. Get Text (i ndex, m sel ected);
}
el se
{
m sel ected = ""
}

CDi al 0g: : OnOK() ;
}

This code calls the list box member function GetCurSel(), which returns a constant
represented by LB_ERR if there is no selection or if more than one string has been
selected. Otherwise, it returns the zero-based index of the selected string. The
GetText() member function fills m_selected with the string at position index. After
filling this member variable, this function calls the base class OnOK() function to do
the other processing required.

In a moment you will add lines to CSdiApp::Initinstance() to mention the selected string
in the message box. Those lines will execute whether the user clicks OK or Cancel, so
you need to add a function to handle the user’s clicking Cancel. Simply follow the
numbered steps for adding OnOK, except that you choose ID_CANCEL from the top-right
box and agree to call the function OnCancel. The code, as shown in Listing 2.4, resets
m_selected because the user canceled the dialog box.

Listing 2.4 SDIDIALOG.CPP - CSdiDialog::OnCancel()

voi d CSdi Di al og: : OnCancel ()
{

m sel ected = "";
CDi al og: : OnCancel ();

}

Add these lines to CSdiApp::Initinstance() just before the call to AfxMessageBox():

nmsg += ". List Selection:
nsg += dl g. m sel ect ed;

Build the application, run it, and test it. Does it work as you expect? Does it resemble
Figure 2.17?

FIG. 2.17 Your application now displays strings in the list box.

javascript:popUp('02uvc17.gif')

Using Radio Buttons

You may have already noticed that when the dialog box first appears onscreen, none of
the radio buttons are selected. You can arrange for one of them to be selected by
default: Simply add two lines to CSdiDialog::OnlInitDialog(). These lines set the second
radio button and save the change to the dialog box:

mradio = 1;
Updat eDat a(FALSE)

You may recall that m_radio is the member variable to which the group of radio buttons
Is connected. It is a zero-based index into the group of buttons, indicating which one is
selected. Button 1 is the second button. The call to UpdateData() refreshes the dialog
box controls with the member variable values. The parameter indicates the direction of
transfer: UpdateData(TRUE) would refresh the member variables with the control
values, wiping out the setting of m_radio you just made.

Unlike list boxes, a group of radio buttons can be accessed after the dialog box is no
longer onscreen, so you won't need to add code to OnOK() or OnCancel(). However, you
have a problem: how to convert the integer selection into a string to tack on the end of
msg. There are lots of approaches, including the Format() function of CString, butin
this case, because there are not many possible selections, a switch statement is readable
and quick. At the end of CSdiApp::Initinstance(), add the lines in Listing 2.5 just before
the call to AfxMessageBox().

Listing 2.5 SDIDIALOG.CPP - Linesto Add to CSdiApp::Initlnstance()

msg += "\r\n";
nmsg += "Radi o Sel ecti on:
switch (dl g. mradio)

{

case O:
meg += "0";
br eak;

case 1:
meg += "1";
br eak;

case 2:
meg += "2";
br eak;

defaul t:
meg += "none";
br eak;

}

The first new line adds two special characters to the message. Return, represented by \r,

and new line, represented by \n, combine to form the Windows end-of-line marker. This
adds a line break after the part of the message you have built so far. The rest of msg
will appear on the second line of the message box. The switch statement is an ordinary
piece of C++ code, which was also present in C. It executes one of the case statements,
depending on the value of dlg.m_radio.

Once again, build and test the application. Any surprises? It should resemble Figure 2.18.
You are going to be building and using dialog boxes throughout this book, so take the
time to understand how this application works and what it does. You may want to step
through it with the debugger and watch it in action. You can read all about debugging
in Chapter 24, "Improving Your Application's Performance,” and in Appendix D,
"Debugging."

FIG. 2.18 Your application now selects Button Two by default.

+= Previous Chapter =» Next Chapter 1 Contents

© Copyright Macmillan Computer Publishing. All rights reserved.

javascript:popUp('02uvc18.gif')

oue
Special Edition Using Visual C++ 6

+= Previous Chapter =» MNext Chapter 2 Contents

_3-

M essages and Commands

. Understanding Message Routing

. Understanding Message Loops

. Reading Message Maps
o Message Map Macros
o How Message Maps Work
o Messages Caught by MFC Code

. Learning How ClassWizard Helps You Catch Messages
o The ClassWizard Tabbed Dialog Box
o The Add Windows Message Handler Dialog Box
o Which Class Should Catch the Message?

. Recognizing Messages

. Understanding Commands

. Understanding Command Updates

. Learning How ClassWizard Helps You Catch Commands and Command Updates

Under standing M essage Routing

IT there is one thing that sets Windows programming apart from other kinds of
programming, it is messages. Most DOS programs, for example, relied on watching
(sometimes cal led polling) possible sources of input like the keyboard or the mouse to
await input from them. A program that wasn't polling the mouse would not react to
mouse input. In contrast, everything that happens in a Windows program is mediated by

messages. A message is a way for the operating system to tell an application that
something has happened - for example, the user has typed, clicked, or moved the mouse, or
the printer has become available. A window (and every screen element is a window) can
also send a message to another window, and typical ly most windows react to messages by
passing a slightly different message along to another window. MFC has made it much
easier to deal with messages, but you must understand what is going on beneath the
surface.

Messages are all referred to by their names, though the operating system uses integers
to refer to them. An enormous list of #define statements connects names to numbers and
lets Windows programmers talk about WM_PAINT or WM_SIZE or whatever message
they need to talk about. (The WM stands for Window Message.) An excerpt from that
list is shown in Listing 3.1.

Listing 3.1 Excerpt from winuser.h Defining M essage Names

#defi ne WM _SETFOCUS 0x0007
#defi ne WM _KI LLFOCUS 0x0008
#defi ne W _ENABLE 0Ox000A
#defi ne WM_SETREDRAW 0x000B
#defi ne WM _SETTEXT 0x000C
#define WM _GETTEXT 0x000D
#defi ne WM _GETTEXTLENGTH 0x000E
#defi ne WM _PAI NT 0Ox000F
#defi ne WM _CLOSE 0x0010
#defi ne W _QUERYENDSESSI ON 0x0011
#define W QU T 0x0012
#defi ne WM_QUERYOPEN 0x0013
#defi ne WW_ERASEBKGND 0x0014
#def i ne WM_SYSCOLORCHANGE 0x0015
#defi ne VW _ENDSESSI ON 0x0016

As well as a name, a message knows what window it is for and can have up to two
parameters. (Often, several different values are packed into these parameters, but
that's another story.)

Different messages are handled by different parts of the operating system or your
application. For example, when the user moves the mouse over a window, the window
receives a WM_MOUSEMOVE message, which it almost certainly passes to the operating
system to deal with. The operating system redraws the mouse cursor at the new
location. When the left button is clicked over a button, the button (which is a window)
receives a WM_LBUTTONDOWN message and handles it, often generating another
message to the window that contains the button, saying, in effect, "l was clicked."

MFC has enabled many programmers to completely ignore low-level messages such as
WM_MOUSEMOVE and WM_LBUTTONDOWN. Instead, programmers deal only with

higher level messages that mean things like "The third item in this list box has been
selected"” or "The Submit button has been clicked." All these kinds of messages move
around in your code and the operating system code in the same way as the lower level
messages. The only difference is what piece of code chooses to handle them. MFC makes it
much simpler to announce, at the individual class's level, which messages each class can
handle. The old C way, which you will see in the next section, made those
announcements at a higher level and interfered with the object-oriented approach to
Windows programming, which involves hiding implementation details as much as possible
inside objects.

Understanding M essage L oops

The heart of any Windows program is the message loop, typically contained in a
WinMain() routine. The WinMain() routine is, like the main() in DOS or UNIX, the
function called by the operating system when you run the program. You won't write
any WinMain() routines because it is now hidden away in the code that AppWizard
generates for you. Still, there is a WinMain(), just as there is in Windows C programs.
Listing 3.2 shows a typical WinMain().

Listing 3.2 Typical WinMain() Routine

I nt APl ENTRY W nMai n(H NSTANCE hl nst ance,
HI NSTANCE hPr evl nst ance,
LPSTR | pCndLi ne,
I nt nCrdShow)

M5G nsg;

i f (! InitApplication (hlnstance))
return (FALSE);

if (! Initlnstance (hlnstance, nCndShow))
return (FALSE);

whil e (Get Message (&rsg, NULL, 0, 0)){
Transl at eMessage (&nsQ);
Di spat chMessage (&nsQ);

}
return (nmsg. wPar anm ;

}

In a Windows C program like this, InitApplication() typically calls RegisterWindow(),
and Initlnstance() typically calls CreateWindow(). (More details on this are in Appendix
B, "Windows Programming Review and a Look Inside Cwnd.") Then comes the message

loop, the while loop that calls GetMessage(). The API function GetMessage() fil s msg
with a message destined for this application and almost always returns TRUE, so this
loop runs over and over until the program is finished. The only thing that makes
GetMessage() return FALSE is if the message it receives is WM_QUIT.

TranslateMessage() is an APl function that streamlines dealing with keyboard messages.
Most of the time, you don't need to know that "the A key just went down" or "the A key
just went up,” and so on. It's enough to know that "the user pressed A."
TranslateMessage() deals with that. It catches the WM_KEYDOWN and WM_KEYUP
messages and usually sends a WM_CHAR message in their place. Of course, with MFC,
most of the time you don't care that the user pressed A. The user types into an edit box
or similar control, and you can retrieve the entire string out of it later, when the user
has clicked OK. Don't worry too much about TranslateMessage().

The API function DispatchMessage() calls the WndProc for the window that the message
Is headed for. The WndProc() function for a Windows C program is a huge switch
statement with one case for each message the programmer planned to catch, such as the
one in Listing 3.3.

Listing 3.3 Typical WndProc() Routine

LONG API ENTRY Mai nwhdProc (HWND hwhd, // w ndow handl e
U NT nmessage, // type of nessage
U NT wParam // additional information
LONG | Param) // additional information

switch (nessage) {
case VW MOUSEMOVE:
/ I handl e nbuse novenent
br eak;
case WM LBUTTONDOWN:
//handle left click
br eak;
case WM RBUTTONDOWN:
/I'handl e right click
br eak;
case VW _PAI NT:
[l repaint the w ndow
br eak;
case WM DESTROY: // nessage: w ndow bei ng destroyed
Post Qui t Message (0);
br eak;
defaul t:
return (Def WndowProc (hwWwd, nessage, wParam | Paran));
}

return (0);

}

As you can imagine, these WndProcs become very long in a hurry. Program maintenance
can be a nightmare. MFC solves this problem by keeping information about message
processing close to the functions that handle the messages, freeing you from
maintaining a giant switch statement that is all in one place. Read on to see how it's
done.

Reading M essage M aps

Message maps are part of the MFC approach to Windows programming. Instead of writing
a WinMain() function that sends messages to your WindProc and then writing a
WindProc that checks which kind of message this is and then calls another of your
functions, you just write the function that will handle the message, and you add a
message map to your class that says, in effect, "l will handle this sort of message." The
framework handles whatever routing is required to send that message to you.

TIP: If you've worked in Microsoft Visual Basic, you should be familiar with
event procedures, which handle specific events such as a mouse click. The
message-handling functions you will write in C++ are equivalent to event
procedures. The message map is the way that events are connected to their
handlers.

Message maps come in two parts: one in the .h file for a class and one in the
corresponding .cpp. Typically, they are generated by wizards, although in some
circumstances you will add entries yourself. Listing 3.4 shows the message map from the
header file of one of the classes in a simple application called ShowString, presented in
Chapter 8, "Building a Complete Application: ShowString."

Listing 3.4 Message Map from showstring.h

I 1 {{ AFX_NMSGE CShowsSt ri ngApp)
af x_nmsg voi d OnAppAbout ();
/1 NOTE - the CassWzard will add and renove nenber
functions here.
/1 DO NOT EDI T what you see in these bl ocks of generated

code !
/1}} AFX_MSG

DECLARE_MVESSAGE_MAP()

This declares a function called OnAppAbout(). The specially formatted comments
around the declarations help ClassWizard keep track of which messages are caught by
each class. DECLARE_MESSAGE_MAP() is a macro, expanded by the C++ compiler's
preprocessor, that declares some variables and functions to set up some of this magic
message catching.

The message map in the source file, as shown in Listing 3.5, is quite similar.

Listing 3.5 Message Map from Chapter 8's showstring.cpp

BEG N_MESSAGE MAP(CShowSt ri ngApp, CW nApp)
I {{ AFX_M5G_NMAP(CShowst ri ngApp)
ON_COMVAND(| D_APP_ABQUT, OnAppAbout)
/1 NOTE - the ClassWzard will add and renpbve mappi hg nacros
her e.
/1 DO NOT EDI T what you see in these bl ocks of generated
code!
/1}} AFX_MSG_VAP
/1 Standard file based docunent conmands
ON_COMVAND(| D_FI LE_NEW CW nApp: : OnFi | eNew)
ON_COMVAND(| D_FI LE_OPEN, CW nApp: : OnFi | eOQpen)
/'l Standard print setup conmand
ON_COVMAND(| D_FI LE_PRI NT_SETUP, CW nApp:: OnFi |l ePri nt Set up)

END MESSAGE MAP()
M essage M ap M acr os

BEGIN_MESSAGE_MAP and END_MESSAGE_MAP are macros that, like
DECLARE_MESSAGE_MAP in the include file, declare some member variables and
functions that the framework can use to navigate the maps of all the objects in the
system. A number of macros are used in message maps, including these:

. DECLARE_MESSAGE_MAP - Used in the include file to declare that there will be
a message map in the source file.

. BEGIN MESSAGE MAP - Marks the beginning of a message map in the source file.
. END MESSAGE MAP - Marks the end of a message map in the source file.

. ON_COMMAND - Used to delegate the handling of a specific command to a member
function of the class.

. ON_COMMAND_ RANGE - Used to delegate the handling of a group of commands,
expressed as a range of command IDs, to a single member function of the class.

« ON_CONTROL - Used to delegate the handling of a specific custom control-
notification message to a member function of the class.

. ON_CONTROL_RANGE - Used to delegate the handling of a group of custom
control-notification messages, expressed as a range of control IDs, to asingle
member function of the class.

. ON_MESSAGE - Used to delegate the handling of a user-defined message to a
member function of the class.

. ON_REGISTERED MESSAGE - Used to delegate the handling of a registered user-
defined message to a member function of the class.

. ON_UPDATE_COMMAND_UI - Used to delegate the updating for a specific
command to a member function of the class.

. ON_COMMAND_UPDATE_UIl_RANGE - Used to delegate the updating for a group
of commands, expressed as a range of command IDs, to a single member function of
the class.

« ON_NOTIFY - Used to delegate the handling of a specific control-notification
message with extra data to a member function of the class.

. ON_NOTIFY_RANGE - Used to delegate the handling of a group of control-
notification messages with extra data, expressed as a range of child identifiers, to
a single member function of the class. The controls that send these notifications
are child windows of the window that catches them.

« ON_NOTIFY_EX - Used to delegate the handling of a specific control-notification
message with extra data to a member function of the class that returns TRUE or
FALSE to indicate whether the notification should be passed on to another object
for further reaction.

« ON_NOTIFY_EX RANGE - Used to delegate the handling of a group of control-
notification messages with extra data, expressed as a range of child identifiers, to
a single member function of the class that returns TRUE or FALSE to indicate
whether the notification should be passed on to another object for further
reaction. The controls that send these notifications are child windows of the
window that catches them.

In addition to these, there are about 100 macros, one for each of the more common
messages, that direct a single specific message to a member function. For example,
ON_CREATE delegates the WM_CREATE message to a function called OnCreate(). You
cannot change the function names in these macros. Typically, these macros are added to
your message map by ClassWizard, as demonstrated in Chapter 8.

How M essage Maps Work

The message maps presented in Listings 3.3 and 3.4 are for the CShowStringApp class of
the ShowString application. This class handles application-level tasks such as opening a
new file or displaying the About box. The entry added to the header file's message map
can be read as "there is a function called OnAppAbout() that takes no parameters.” The
entry in the source file's map means "when an ID_APP_ABOUT command message arrives,
call OnAppAbout()." It shouldn't be a big surprise that the OnAppAbout() member
function displays the About box for the application.

If you don't mind thinking of all this as magic, it might be enough to know that adding
the message map entry causes your code to run when the message is sent. Perhaps you're
wondering just how message maps real ly work. Here's how. Every application has an
object that inherits from CWinApp, and a member function called Run(). That function
calls CWinThread::Run(), which is far longer than the simple WinMain() presented
earlier but has the same message loop at its heart: call GetMessage(), call
TranslateMessage(), call DispatchMessage(). AImost every window object uses the same
old-style Windows class and the same WindProc, called AfxWndProc(). The WindProc, as
you've already seen, knows the handle, hWnd, of the window the message is for. MFC
keeps something called a handle map, a table of window handles and pointers to objects,
and the framework uses this to send a pointer to the C++ object, a CWnd*. Next, it calls
WindowProc(), a virtual function of that object. Buttons or views might have different
WindowProc() implementations, but through the magic of polymorphism, the right
function is called.

Polymorphism

Virtual functions and polymorphism are important C++ concepts for anyone
working with MFC. They arise only when you are using pointers to objects
and when the class of objects to which the pointers are pointing is derived
from another class. Consider as an example a class called CDerived that is
derived from a base class called CBase, with a member function called
Function() that is declared in the base class and overridden in the derived
class. There are now two functions: One has the full name
CBase::Function(), and the other is CDerived::Function().

IT your code has a pointer to a base object and sets that pointer equal to
the address of the derived object, it can then call the function, like this:

CDeri ved derivedobj ect;
CBase* basepointer;

basepoi nter = &derivedobj ect;
basepoi nt er - >Function();

In this case, CBase::Function() will be called. However, there are times
when that is not what you want - when you have to use a CBase pointer,
but you really want CDerived::Function() to be called. To indicate this, in
CBase, Function() is declared to be virtual. Think of it as an instruction to
the compiler to override this function, if there is any way to do it.

When Function() is declared to be virtual in the base class, CBase, the code
fragment above would actually call CDerived::Function(), as desired.
That's polymorphism, and that shows up again and again when using MFC
classes. You use a pointer to a window, a CWnd*, that real ly points to a

CButton or a CView or some other class derived from CWnd, and when a
function such as WindowProc() is called, it will be the derived function -
CButton::WindowProc() for example - that is cal led.

NOTE:[You might wonder why the messages can't just be handled by
virtual functions. This would make the virtual tables enormous, and slow
the application too much. The message map system is a much faster
approach. n

WindowProc()calls OnWndMsg(), the C++ function that really handles messages. First,
it checks to see whether this is a message, a command, or a notification. Assuming it's a
message, it looks in the message map for the class, using the member variables and
functions set up by DECLARE_MESSAGE_MAP, BEGIN_MESSAGE_MAP, and
END_MESSAGE_MAP. Part of what those macros arrange is to enable access to the
message map entries of the base class by the functions that search the message map of
the derived class. That means that if a class inherits from CView and does not catch a
message normally caught by CView, that message will still be caught by the same CView
function as inherited by the derived class. This message map inheritance parallels the
C++ inheritance but is independent of it and saves a lot of trouble carrying virtual
functions around.

The bottom line: You add a message map entry, and when a message arrives, the functions
called by the hidden message loop ook in these tables to decide which of your objects,
and which member function of the object, should handle the message. That's what's
really going on behind the scenes.

M essages Caught by MFC Code

The other great advantage of MFC is that the classes already catch most of the common
messages and do the right thing, without any coding on your part at all. For example,
you don't need to catch the message that tells you that the user has chosen File, Save
As - MFC classes catch it, put up the dialog box to obtain the new filename, handle all
the behind-the-scenes work, and finally call one of your functions, which must be
named Serialize(), to actually write out the document. (Chapter 7, "Persistence and File
1/0," explains the Serialize() function.) You need only to add message map entries for
behavior that is not common to all applications.

L earning How ClassWizard Helps You Catch M essages

Message maps may not be simple to read, but they are simple to create if you use

ClassWizard. There are two ways to add an entry to a message map in Visual C++ 6.0:
with the main ClassWizard dialog box or with one of the new dialog boxes that add
message handlers or virtual functions. This section shows you these dialog boxes for
ShowString, rather than work you through creating a sample application.

The ClassWizard Tabbed Dialog Box

The main ClassWizard dialog box is displayed by choosing View, ClassWizard or by
pressing Ctrl+W. ClassWizard is a tabbed dialog box, and Figure 3.1 shows the Message
Maps tab. At the top of the dialog box are two drop-down list boxes, one that reminds
you which project you are working on (ShowString in this case) and the other that
reminds you which class owns the message map you are editing. In this case, it is the
CShowsStringApp class, whose message map you have already seen.

FIG. 3.1 ClassWizard makes catching messages simple.

Below those single-line boxes is a pair of multiline boxes. The one on the left lists the
class itself and all the commands that the user interface can generate. Commands are
discussed in the "Commands" section later in this chapter. With the classname
highlighted, the box on the right lists all the Windows messages this class might catch.
It also lists a number of virtual functions that catch common messages.

To the right of those boxes are buttons where you can add a new class to the project,
add a function to the class to catch the highlighted message, remove a function that
was catching a message, or open the source code for the function that catches the
highlighted message. Typically, you select a class, select a message, and click Add
Function to catch the message. Here's what the Add Function button sets in motion:

. Adds a skeleton function to the bottom of the source file for the application
. Adds an entry to the message map in the source file

. Adds an entry to the message map in the include file

. Updates the list of messages and member functions in the dialog box

After you add a function, clicking Edit Code makes it simple to start filling in the
behavior of that function. If you prefer, double-click the function name in the Member
Functions list box.

Below the Object IDs and Messages boxes is a list of the member functions of this class
that are related to messages. This class has two such functions:

. Initinstance()--Overrides a virtual function in CWinApp, the base class for

javascript:popUp('03uvc01.gif')

CShowsStringApp, and is labeled with a V (for virtual function) in the list.

. OnAppAbout()--Catches the ID_APP_ABOUT command and is labeled with a W (for
Windows message) in the list.

The Initinstance function is cal led whenever an application first starts. You don't need
to understand this function to see that ClassWizard reminds you the function has been
over-ridden.

Finally, under the Member Functions box is a reminder of the meaning of the
highlighted message. cal led to implement wait cursors is a description of the
DoWaitCursor virtual function.

The Add Windows M essage Handler Dialog Box

In release 5.0 of Visual C++, a new way of catching messages was added. Rather than
opening ClassWizard and then remembering to set the right classname in a drop-down
list box, you right-click on the classname in ClassView and then choose Add Windows
Message Handler from the shortcut menu that appears. Figure 3.2 shows the dialog box
that appears when you make this choice.

FIG. 3.2 The New Windows Message and Event Handlers dialog box is another way to catch
messages.

This dialog box does not show any virtual functions that were listed in the main
ClassView dialog box. It is easy to see that this class catches the command
ID_APP_ABOUT but does not catch the command update. (Commands and command
updating are discussed in more detail later in this chapter.) To add a new virtual
function, you right-click on the class in ClassView and choose Add New Virtual
Function from the shortcut menu. Figure 3.3 shows this dialog box.

FIG. 3.3 The New Virtual Override dialog box simplifies implementing virtual functions.

You can see in Figure 3.3 that CShowStringApp already overrides the InitInstance()
virtual function, and you can see what other functions are available to be overridden.
As in the tabbed dialog box, a message area at the bottom of the dialog box reminds you
of the purpose of each function: In fact, the text - Called to implement wait cursors - is
identical to that in Figure 3.1.

Which Class Should Catch the M essage?

The only tricky part of message maps and message handling is deciding which class
should catch the message. That's a decision you can't make until you understand all the
different message and command targets that make up a typical application. The choice is

javascript:popUp('03uvc02.gif')
javascript:popUp('03uvc03.gif')

usually one of the following:
. The active view
. The document associated with the active view
. The frame window that holds the active view
. The application object

Views, documents, and frames are discussed in Chapter 4, "Documents and Views."
Recognizing M essages

There are almost 900 Windows messages, so you won't find a list of them all in this
chapter. Usually, you arrange to catch messages with ClassWizard and are presented
with a much shorter list that is appropriate for the class you are catching messages
with. Not every kind of window can receive every kind of message. For example, only
classes that inherit from CListBox receive list box messages such as LB_SETSEL, which
directs the list box to move the highlight to a specific list item. The first component of a
message name indicates the kind of window this message is destined for, or coming from.
These window types are listed in Table 3.1.

Table 3.1 Windows M essage Prefixes and Window Types

Prefix Window Type

ABM, ABN Appbar

ACM, ACN Animation control

BM, BN Button

CB, CBN Combo box

CDM, CDN Common dialog box

CPL Control Panel application
DBT Any application (device change message)
DL Drag list box

DM Dialog box

EM, EN Edit box

FM, FMEVENT File Manager

HDM, HDN Header control

HKM HotKey control

IMC, IMN IME window

LB, LBN List box

LVM, LVN List view

NM Any parent window (notification message)
PBM Progress bar

PBT Any application (battery power broadcast)
PSM, PSN Property sheet

SB Status bar

SBM Scrollbar

STM, STN Static control

TB, TBN Toolbar

TBM Track bar

TCM, TCN Tab control

TTM, TTN ToolTip

TVM, TVN Tree view

UDM Up Down control

WM Generic window

What's the difference between, say, a BM message and a BN message? A BM message is a
message to a button, such as "act as though you were just clicked.” A BN message is a
notification from a button to the window that owns it, such as "l was clicked.” The same
pattern holds for all the prefixes that end with M or N in the preceding table.

Sometimes the message prefix does not end with M; for example CB is the prefix for a
message to a combo box, whereas CBN is the prefix for a notification from a combo box to
the window that owns it. Another example is CB_SETCURSEL, a message to a combo box
directing it to select one of its strings, whereas CBN_SELCHANGE is a message sent from
a combo box, notifying its parent that the user has changed which string is selected.

Understanding Commands

What is a command? It is a special type of message. Windows generates a command
whenever a user chooses a menu item, clicks a button, or otherwise tells the system to
do something. In older versions of Windows, both menu choices and button clicks
generated a WM_COMMAND message; these days you receive a WM_COMMAND for a
menu choice and a WM_NOTIFY for a control notification such as button clicking or
list box selecting. Commands and notifications are passed around by the operating
system just like any other message, until they get into the top of OnWndMsg(). At that
point, Windows message passing stops and MFC command routing starts.

Command messages all have, as their first parameter, the resource ID of the menu item
that was chosen or the button that was clicked. These resource IDs are assigned
according to a standard pattern - for example, the menu item File, Save has the resource
ID ID_FILE_SAVE.

Command routing is the mechanism OnWndMsg() uses to send the command (or
notification) to objects that can't receive messages. Only objects that inherit from
CWnd can receive messages, but all objects that inherit from CCmdTarget, including
CWnd and CDocument, can receive commands and notifications. That means a class that
inherits from CDocument can have a message map. There won't be any entries in it for
messages, only for commands and notifications, but it's still a message map.

How do the commands and notifications get to the class, though? By command routing.
(This becomes messy, so if you don't want the inner details, skip this paragraph and the
next.) OnWndMsg() calls CWnd::OnCommand() or CWnd::OnNotify(). OnCommand()
checks all sorts of petty stuff (such as whether this menu item was grayed after the
user selected it but before this piece of code started to execute) and then calls
OnCmdMsg(). OnNotify() checks different conditions and then it, too, calls OnCmdMsg().
OnCmdMsg() is virtual, which means that different command targets have different
implementations. The implementation for a frame window sends the command to the
views and documents it contains.

This is how something that started out as a message can end up being handled by a
member function of an object that isn't a window and therefore can't really catch
messages.

Should you care about this? Even if you don't care how it all happens, you should care
that you can arrange for the right class to handle whatever happens within your
application. If the user resizes the window, a WM_SIZE message is sent, and you may have
to rescale an image or do some other work inside your view. If the user chooses a menu
item, a command is generated, and that means your document can handle it if that's more
appropriate. You see examples of these decisions at work in Chapter 4.

Understanding Command Updates

This under-the-hood tour of how MFC connects user actions such as window resizing or
menu choices to your code is almost finished. All that's left is to handle the graying of
menus and buttons, a process cal led command updating.

Imagine you are designing an operating system, and you know it's a good idea to have
some menu items grayed to show they can't be used right now. There are two ways you
can go about implementing this.

One is to have a huge table with one entry for every menu item and a flag to indicate
whether it's available. Whenever you have to display the menu, you can quickly check
the table. Whenever the program does anything that makes the item available or
unavailable, it updates the table. This is cal led the continuous-update approach.

The other way is not to have a table but to check all the conditions just before your
program displays the menu. This is cal led the update-on-demand approach and is the
approach taken in Windows. In the old C way of doing things - to check whether each
menu option should be grayed - the system sent a WM_INITMENUPOPUP message, which
means "I'm about to display a menu." The giant switch in the WindProc caught that
message and quickly enabled or disabled each menu item. This wasn't very object-
oriented though. In an object-oriented program, different pieces of information are
stored in different objects and aren't generally made available to the entire program.

When it comes to updating menus, different objects know whether each item should be
grayed. For example, the document knows whether it has been modified since it was last
saved, so it can decide whether File, Save should be grayed. However, only the view
knows whether some text is currently highlighted; therefore, it can decide if Edit, Cut
and Edit, Copy should be grayed. This means that the job of updating these menus should
be parcelled out to various objects within the application rather than handled within
the WindProc.

The MFC approach is to use a little object called a CCmdUI, a command user interface,
and give this object to whoever catches a CN_UPDATE_COMMAND_UI message. You
catch those messages by adding (or getting ClassWizard to add) an
ON_UPDATE_COMMAND_ Ul macro in your message map. If you want to know what's
going on behind the scenes, it's this: The operating system still sends
WM_INITMENUPOPUP; then the MFC base classes such as CFrameWnd take over. They
make a CCmdUl, set its member variables to correspond to the first menu item, and call
one of that object's own member functions, DoUpdate(). Then, DoUpdate() sends out the
CN_COMMAND_ UPDATE_UI message with a pointer to itself as the CCmdUI object the
handlers use. The same CCmdUI object is then reset to correspond to the second menu
item, and so on, until the entire menu is ready to be displayed. The CCmdUI object is also
used to gray and ungray buttons and other controls in a slightly different context.

CCmdUl has the following member functions:

. Enable()--Takes a TRUE or FALSE (defaults to TRUE). This grays the user
interface item if FALSE and makes it available if TRUE.

. SetCheck()--Checks or unchecks the item.

. SetRadio()--Checks or unchecks the item as part of a group of radio buttons, only
one of which can be set at any time.

. SetText()--Sets the menu text or button text, if this is a button.
. DoUpdate()--Generates the message.

Determining which member function you want to use is usually clear-cut. Here is a
shortened version of the message map from an object called CWhoisView, a class derived
from CFormView that is showing information to a user. This form view contains several
edit boxes, and the user may want to paste text into one of them. The message map
contains an entry to catch the update for the ID_EDIT_PASTE command, like this:

BEG N_MESSAGE_MAP(CWhoi sVi ew, CFor mVi ew)
ON_UPDATE_COVVAND Ul (I D_EDI T_PASTE, OnUpdat eEdi t Past e)

END_ MéééAGE_ MAP()
The function that catches the update, OnUpdateEditPaste(), looks like this:

voi d CWhoi sVi ew. : OnUpdat eEdi t Past e(CCndUl * pCndUI)

{
pCndUl - >Enabl e(:: 1sd i pboar dFor nmat Avai | abl e(CF_TEXT)) ;

}

This calls the API function ::IsClipboardFormatAvailable() to see whether there is text
in the Clipboard. Other applications may be able to paste in images or other nontext
Clipboard contents, but this application cannot and grays the menu item if there is no
text available to paste. Most command update functions look just like this: They call
Enable() with a parameter that is a call to a function that returns TRUE or FALSE, or
perhaps a simple logical expression. Command update handlers must be fast because five
to ten of them must run between the moment the user clicks to display the menu and the
moment before the menu is actually displayed.

L earning How ClassWizard Helps Y ou Catch
Commands and Command Updates

The ClassWizard dialog box shown in Figure 4.1 has the classname highlighted in the
box labeled Object IDs. Below that are resource IDs of every resource (menu, toolbar,
dialog box controls, and so on) that can generate a command or message when this
object (view, dialog, and so on) is on the screen. If you highlight one of those, the list of
messages associated with it is much smaller, as you see in Figure 3.4.

Only two messages are associated with each resource ID: COMMAND and
UPDATE_COMMAND _UIl. The first enables you to add a function to handle the user
selecting the menu option or clicking the button - that is, to catch the command. The
second enables you to add a function to set the state of the menu item, button, or other

control just as the operating system is about to display it - that is, to update the
command. (The COMMAND choice is boldface in Figure 3.4 because this class already
catches that command.)

FIG. 3.4 ClassWizard enables you to catch or update commands.

Clicking Add Function to add a function that catches or updates a command involves an
extra step. ClassWizard gives you a chance to change the default function name, as
shown in Figure 3.5. This is almost never appropriate. There is a regular pattern to the
suggested names, and experienced MFC programmers come to count on function names
that follow that pattern. Command handler functions, like message handlers, have
names that start with On. Typically, the remainder of the function name is formed by
removing the ID and the underscores from the resource ID and capitalizing each word.
Command update handlers have names that start with OnUpdate and use the same
conventions for the remainder of the function name. For example, the function that
catches ID_APP_EXIT should be called OnAppEXxit(), and the function that updates
ID_APP_EXIT should be called OnUpdateAppEXxit().

FIG. 3.5 It's possible, but not wise, to change the name for your command handler or command
update handler from the name suggested by ClassWizard.

Not every command needs an update handler. The framework does some very nice work
graying and ungraying for you automatically. Say you have a menu item - Network,
Send - whose command is caught by the document. When there is no open document, this
menu item is grayed by the framework, without any coding on your part. For many
commands, it's enough that an object that can handle them exists, and no special
updating is necessary. For others, you may want to check that something is selected or
highlighted or that no errors are present before making certain commands available.
That's when you use command updating. If you'd like to see an example of command
updating at work, there is one in Chapter 8 in the "Command Updating" section.

= Previous Chapter =» MNext Chapter 2 Contents

© Copyright Macmillan Computer Publishing. All rights reserved.

javascript:popUp('03uvc04.gif')
javascript:popUp('03uvc05.gif')

oue
Special Edition Using Visual C++ 6

+= Previous Chapter =» MNext Chapter 2 Contents

_4 -

Documents and Views

. Understanding the Document Class

. Understanding the View Class

. Creating the Rectangles Application

. Other View Classes

. Document Templates, Views, and Frame Windows

Under standing the Document Class

When you generate your source code with AppWizard, you get an application featuring
all the bells and whistles of a commercial 32-bit Windows application, including a
toolbar, a status bar, ToolTips, menus, and even an About dialog box. However, in spite
of all those features, the application really does not do anything useful. In order to
create an application that does more than look pretty on your desktop, you need to
modify the code that AppWizard generates. This task can be easy or complex, depending
on how you want your application to look and act.

Probably the most important set of modifications are those related to the document--the
information the user can save from your application and restore later - and to the view--
the way that information is presented to the user. MFC's document/view architecture
separates an application's data from the way the user actually views and manipulates
that data. Simply, the document object is responsible for storing, loading, and saving the
data, whereas the view object (which is just another type of window) enables the user to
see the data onscreen and to edit that data in a way that is appropriate to the

application. In this chapter, you learn the basics of how MFC's document/view
architecture works.

SDI and MDI applications created with AppWizard are document/view applications. That
means that AppWizard generates a class for you derived from CDocument, and delegates
certain tasks to this new document class. It also creates a view class derived from
CView and delegates other tasks to your new view class. Let's look through an
AppWizard starter application and see what you get.

Choose File, New, and select the Projects tab. Fill in the project name as Appl and fill
in an appropriate directory for the project files. Make sure that MFC AppWizard (exe) is
selected. Click OK.

Move through the AppWizard dialog boxes, changing the settings to match those in the
following table, and then click Next to continue:

Step 1: Multiple documents

Step 2: Don't change the defaults presented by AppWizard

Step 3: Don't change the defaults presented by AppWizard

Step 4: Deselect all check boxes except Printing and Print Preview
Step 5: Don't change the defaults presented by AppWizard

Step 6: Don't change the defaults presented by AppWizard

After you click Finish on the last step, the New project information box summarizes your
work. Click OK to create the project. Expand the Appl classes in ClassView, and you see
that six classes have been created: CAboutDIg, CApplApp, CApplDoc, CApplView,
CChildFrame, and CMainframe.

CApplDoc represents a document; it holds the application's document data. You add
storage for the document by adding data members to the CApplDoc class. To see how this
works, look at Listing 4.1, which shows the header file AppWizard creates for the
CApplDoc class.

Listing4.1 APP1DOC.H - TheHeader Filefor the CApplDoc Class

/'l ApplDoc.h : interface of the CApplDoc cl ass

I

FEEEEEEErrrrrrrr i rr i rirririr
#i f

I def i ned(AFX_APP1DOC H 43BB481D 64AE_11D0_9AF3_0080C81A397C | NCLUDED)

#def i ne AFX_APP1DOC H 43BB481D 64AE_11D0_9AF3_0080C81A397C__ | NCLUDED _
#if _MSC_VER > 1000
#pragna once
#endif // _MSC_VER > 1000
cl ass CApplDoc : public CDocunent
{
protected: // create fromserialization only
CApplDoc();
DECLARE_DYNCREATE(CApplDoc)
/'l Attributes
publi c:
/'l QOperations
publi c:
/'l Overrides
/'l O assWzard generated virtual function overrides
/1 {{ AFX_VI RTUAL(CApplDoc)
publi c:
virtual BOOL OnNewDocunent () ;
virtual void Serialize(CArchive& ar);
/1}}AFX_VI RTUAL
/1 1nplenmentation
publi c:
virtual ~CApplDoc();
#i f def _DEBUG
virtual void AssertValid() const;
virtual void Dunp(CDunpCont ext & dc) const;
#endi f
pr ot ect ed:
/'l Generated nessage nmap functions
prot ect ed:
/1 {{ AFX_NMSE CApplDoc)
/1 NOTE - the CassWzard will add and renove nmenber functions
her e.
/1 DO NOT EDIT what you see in these bl ocks of generated
code !
/1}} AFX_MSG
DECLARE_MESSAGE_MAP()
1
FELEEEEEEE bbb rrrrrrir

/1 {{AFX_| NSERT LOCATI ON}}

/1 Mcrosoft Visual C++ will insert additional declarations
/1 inmrediately before the previous |ine.

#endi f // !defined(AFX APP1IDOC H 43BB481D 64AE 11D0 9AF3

[cec] _0080C81A397C__ | NCLUDED)

Near the top of the listing, you can see the class declaration's Attributes section, which
is followed by the public keyword. This is where you declare the data members that will
hold your application’s data. In the program that you create a little later in this
chapter, the application must store an array of CPoint objects as the application's data.
That array is declared as a member of the document class like this:

/'l Attributes
publi c:
CPoi nt poi nt s[100] ;

CPoint is an MFC class that encapsulates the information relevant to a point on the
screen, most importantly the x and y coordinates of the point.

Notice also in the class's header file that the CApplDoc class includes two virtual
member functions called OnNewDocument() and Serialize(). MFC calls the
OnNewDocument() function whenever the user selects the File, New command (or its
toolbar equivalent, if a New button has been implemented in the application). You can
use this function to perform whatever initialization must be performed on your
document's data. In an SDI application, which has only a single document open at any
time, the open document is closed and a new blank document is loaded into the same
object; in an MDI application, which can have multiple documents open, a blank
document is opened in addition to the documents that are already open. The Serialize()
member function is where the document class loads and saves its data. This is discussed in
Chapter 7, "Persistence and File 1/0."

Understanding the View Class

As mentioned previously, the view class displays the data stored in the document object
and enables the user to modify this data. The view object keeps a pointer to the
document object, which it uses to access the document's member variables in order to
display or modify them. Listing 4.2 is the header file for CapplView, as generated by
AppWizard.

TIP: Most MFC programmers add public member variables to their documents
to make it easy for the view class to access them. A more object-oriented
approach is to add private or protected member variables, and then add
public functions to get or change the values of these variables. The
reasoning behind these design principles is explored in Appendix A, " C++
Review and Object-Oriented Concepts."

Listing 4.2 APP1VIEW.H - The Header Filefor the CApplView Class

/'l ApplView. h : interface of the CApplVi ew cl ass

Il

FEEEEEEEEr i bbb rrrrrrir
#i f 1 defined(AFX_APP1VI EWH 43BB481F 64AE_11D0_9AF3

[ccc] _0080C81A397C | NCLUDED)

#defi ne

AFX_APP1VI EW H 43BB481F 64AE_11D0_9AF3 0080C81A397C | NCLUDED

#if _MSC_VER > 1000
#pragna once
#endif // _MSC_VER > 1000
cl ass CApplView : public CView
{
protected: // create fromserialization only
CApplVi ew() ;
DECLARE_DYNCREATE(CApplVi ew)
Il Attributes
publi c:
CApplDoc* GCet Docunent () ;
/'l QOperations
publi c:
/'l Overrides
/'l O assWzard generated virtual function overrides
I {{ AFX_VI RTUAL(CApplVi ew)
publi c:
virtual void OnDraw(CDC* pDC); [// overridden to draw this view
virtual BOOL PreCreat eW ndow CREATESTRUCT& cs);
pr ot ect ed:
virtual BOOL OnPreparePrinting(CPrintlnfo* plnfo);
virtual void OnBegi nPrinting(CDC* pDC, CPrintlnfo* plnfo);
virtual void OnEndPrinting(CDC* pDC, CPrintlnfo* plnfo);
/1}}AFX_VI RTUAL
/1 1nplenmentation
publi c:
virtual ~CApplView);
#i f def _DEBUG
virtual void AssertValid() const;
virtual void Dunp(CDunpCont ext & dc) const;

#endi f
pr ot ect ed:
/'l Generated nessage nmap functions
pr ot ect ed:
I 1 {{ AFX_NMSGE CApplVi ew)
/'l NOTE - the ClassWzard will add and renove nmenber functions
her e.
/1 DO NOT EDIT what you see in these bl ocks of generated
code !
/1}} ARX_NMSG

DECLARE_MESSAGE_MAP()
1
#i fndef _DEBUG // debug version in ApplView. cpp
i nline CApplDoc* CApplVi ew. : Get Docunent ()

{ return (CApplDoc*)m pDocunent; }

#endi f
FEEETEEEE i r i r i rrrirry
1 {{ AFX_| NSERT_LCOCATI ON} }
/'l Mcrosoft Visual C++ will insert additional declarations
/1 imrediately before the previous |ine.
#endi f // !defined(AFX_APP1VI EWH 43BB481F 64AE_11D0_9AF3

[ccc] _0080C81A397C | NCLUDED)

Near the top of the listing, you can see the class's public attributes, where it declares
the GetDocument() function as returning a pointer to a CApplDoc object. Anywhere in
the view class that you need to access the document's data, you can call GetDocument()
to obtain a pointer to the document. For example, to add a CPoint object to the
aforementioned array of CPoint objects stored as the document's data, you might use the
following line:

Get Docunent () - >m _poi nt s[Xx] = poi nt;

You also can do this a little differently, of course, by storing the pointer returned by
GetDocument() in a local pointer variable and then using that pointer variable to
access the document's data, like this:

pDoc = Get Docunent ();
pDoc->m poi nts[x] = point;

The second version is more convenient when you need to use the document pointer in
several places in the function, or if using the less clear GetDocument()->variable
version makes the code hard to understand.

NOTE: In release versions of your program, the GetDocument() function is
inline, which means there is no performance advantage to saving the pointer
like this, but it does improve readability. Inline functions are expanded into
your code like macros, but offer type checking and other advantages, as
discussed in Appendix A. n

Notice that the view class, like the document class, overrides a number of virtual
functions from its base class. As you'l 1 soon see, the OnDraw() function, which is the
most important of these virtual functions, is where you paint your window's display. As
for the other functions, MFC calls PreCreateWindow() before the window element
(that is, the actual Windows window) is created and attached to the MFC window class,
giving you a chance to modify the window's attributes (such as size and position). These
two functions are discussed in more detail in Chapter 5, "Drawing on the Screen.”
OnPreparePrinting() is used to modify the Print dialog box before it displays for the
user; the OnBeginPrinting() function gives you a chance to create GDI objects like pens
and brushes that you need to handle the print job; and OnEndPrinting() is where you
can destroy any objects you might have created in OnBeginPrinting(). These three
functions are discussed in Chapter 6, "Printing and Print Preview."

NOTE: When you first start using an application framework like MFC, it's
easy to get confused about the difference between an object instantiated
from an MFC class and the Windows element it represents. For example,

when you create an MFC frame-window object, you're actually creating
two things: the MFC object that has member functions and member
variables, and a Windows window that you can manipulate using the
functions of the MFC object. The window element is associated with the
MFC class, but is also an entity unto itself. n

Creating the Rectangles Application

Now that you've had an introduction to documents and views, a little hands-on
experience should help you better understand how these classes work. In the steps that
follow, you build the Rectangles application, which demonstrates the manipulation of
documents and views. When you first run this application, it will draw an empty window.
Wherever you click in the window, a small rectangle will be drawn. You can resize the
window, or minimize and restore it, and the rectangles will be redrawn at all the
coordinates where you clicked, because Rectangles keeps an array of coordinate points
in the document and uses that array in the view.

First, use AppWizard to create the basic files for the Rectangles program, selecting the
options listed in the following table. (AppWizard is first discussed in Chapter 1,
"Building Your First Windows Application.” When you're done, the New Project
Information dialog box appears; it should look like Figure 4.1. Click the OK button to
create the project files.

Dialog Box Name |Options to Select

New Project Name the project recs and set the project path to the
directory into which you want to store the project's files.
Leave the other options set to their defaults.

Step 1l Select Single Document.

Step2of6 Leave default settings.

Step3o0f6 Leave default settings.

Step4 of6 Turn off all application features except Printing and Print

Preview.

Step50f6 Leave default settings.

Step6of6 Leave default settings.

FIG. 4.1 When you create an SDI application with AppWizard, the project information summary
confirms your settings.

Now that you have a starter application, it's time to add code to the document and view
classes in order to create an application that actually does something. This application

javascript:popUp('04uvc01.gif')

will draw many rectangles in the view and save the coordinates of the rectanglesin
the document.

Follow these steps to add the code that modifies the document class to handle the
application's data, which is an array of CPoint objects that determine where rectangles

should be drawn in the view window:

1. Click the ClassView tab to display the ClassView in the project workspace
window at the left of the screen.

2. Expand the recs classes by clicking the + sign before them.

3. Right-click the CRecsDoc class and choose Add Member Variable from the
shortcut menu that appears.

4. Fill in the Add Member Variable dialog box. For Variable Type, enter CPoint.
For Variable Name, enter m_points[100]. Make sure the Public radio button is
selected. Click OK.

5. Again, right-click the CRecsDoc class and choose Add Member Variable.

6. For Variable Type, enter UINT. For Variable Name, enter m_pointindex. Make
sure the Public radio button is selected. Click OK.

7. Click the + next to CRecsDoc in ClassView to see the member variables and
functions. The two member variables you added are now listed.

The m_points[] array holds the locations of rectangles displayed in the view window.
The m_pointindex data member holds the index of the next empty element of the array.

TIP: If you've programmed in C++ before and are not used to the ClassView,
you can open RecsDoc.h from the FileView and add (after a public: specifier)
the two lines of code that declare these variables:

U NT m_poi nt | ndex;
CPoi nt m poi nt s[100];

Now you need to get these variables initialized to appropriate values and then use them
to draw the view. MFC applications that use the document/view paradigm initialize
document data in a function called OnNewDocument(), which is cal led automatically
when the application first runs and whenever the user chooses File, New.

The list of member variables and functions of CRecsDoc should still be displayed in

ClassView. Double-click OnNewDocument() in that list to edit the code. Using Listing
4.3 as a guide, remove the comments left by AppWizard and initialize m_pointindex to
zero.

Listing 4.3 RECSDOC.CPP - CRecsDoc::OnNewDocument()

BOOL CRecsDoc: : OnNewDocunent ()

{
i f (! CDocunent:: OnNewDocunent ())
return FALSE
m poi nt | ndex = O0;
return TRUE;
}

There is no need to initialize the array of points because the index into the array will
be used to ensure no code tries to use an uninitialized element of the array. At this
point your modifications to the document class are complete. As you'll see in Chapter 7,
there are a few simple changes to make if you want this information actually saved in
the document. In order to focus on the way documents and views work together, you
will not be making those changes to the recs application.

Now turn your attention to the view class. It will use the document data to draw
rectangles onscreen. A full discussion of the way that drawing works must wait for
Chapter 5. For now it is enough to know that the OnDraw() function of your view class
does the drawing. Expand the CRecsView class in ClassView and double-click OnDraw().
Using Listing 4.4 as a guide, remove the comments left by AppWizard and add code to
draw a rectangle at each point in the array.

Listing 4.4 RECSVIEW.CPP - CRecsView::OnDraw()

voi d CRecsVi ew. : OnDr aw(CDC* pDC)

{
CRecsDoc* pDoc = Get Docunent();

ASSERT_VALI D(pDoc) ;
U NT poi ntl ndex = pDoc->m poi nt | ndex;
for (U NT i=0; i<pointlndex; ++i)
{
U NT x = pDoc->m points[i].x;
U NT y = pDoc->m points[i].y;
pDC- >Rect angl e(x, y, x+20, y+20);

}

Your modifications to the starter application generated by AppWizard are almost
complete. You have added member variables to the document, initialized those variables
in the document's OnNewDocument() function, and used those variables in the view's

OnDraw() function. All that remains is to enable the user to add points to the array. As
discussed in Chapter 3, "Messages and Commands,"” you catch the mouse message with
ClassWizard and then add code to the message handler. Follow these steps:

1. Choose View, ClassWizard. The ClassWizard dialog box appears.

2. Make sure that CRecsView is selected in the Class Name and Object IDs boxes.
Then, double-click WM_LBUTTONDOWN in the Messages box to add the
OnLButtonDown() message-response function to the class. Whenever the
application receives a WM_LBUTTONDOWN message, it will call
OnLButtonDown().

3. Click the Edit Code button to jump to the OnLButtonDown() function in your
code. Then, add the code shown in Listing 4.5 to the function.

Listing4.5 RECSVIEW.CPP - CRecsView::OnL ButtonDown()

voi d CRecsVi ew. : OnLBut t onDown(Ul NT nFl ags, CPoi nt point)

{

}

CRecsDoc *pDoc = Get Docunent () ;
/1l don't go past the end of the 100 points allocated
i f (pDoc->m poi ntlndex == 100)

return;
//store the click location
pDoc- >m poi nt s[pDoc- >m poi nt | ndex] = point;

pDoc- >m poi nt | ndex++;

pDoc- >Set Modi fi edFl ag() ;

I nval i date();

CVi ew. : OnLBut t onDown(nFl ags, point);

The new OnLButtonDown() adds a point to the document's point array each time the
user clicks the left mouse button over the view window. It increments m_pointindex so
that the next click goes into the point on the array after this one.

The call to SetModifiedFlag() marks this document as modified, or "dirty." MFC
automatical ly prompts the user to save any dirty files on exit. (The details are found in
Chapter 7.) Any code you write that changes any document variables should call
SetModifiedFlag().

NOTE: Earlier in this chapter you were reminded that public access
functions in the document have some advantages. One such advantage: Any
document member function that changed a variable also could call
SetModifiedFlag(), thus guaranteeing no programmer could forgetit. n

Finally, the call to Invalidate() causes MFC to call the OnDraw() function, where the
window's display is redrawn with the new data. Invalidate() takes a single parameter
(with the default value TRUE) that determines if the background is erased before
calling OnDraw(). On rare occasions you may choose to call Invalidate(FALSE) so that
OnDraw() draws over whatever was already onscreen.

Finally, a call to the base class OnLButtonDown() takes care of the rest of the work
involved in handling a mouse click.

You've now finished the complete application. Click the toolbar's Build button, or
choose Build, Build from the menu bar, to compile and link the application. After you
have the Rectangles application compiled and linked, run it by choosing Build, Execute.
When you do, you see the application's main window. Place your mouse pointer over the
window's client area and click. A rectangle appears. Go ahead and keep clicking. You
can place up to 100 rectangles in the window (see Figure 4.2).

FIG. 4.2 The Rectangles application draws rectangles wherever you click.

Other View Classes

The view classes generated by AppWizard in this chapter's sample applications have been
derived from MFC's CView class. There are cases, however, when it is to your advantage
to derive your view class from one of the other MFC view classes derived from CView.
These additional classes provide your view window with special capabilities such as
scrolling and text editing. Table 4.1 lists the various view classes along with their
descriptions.

Table4.1 View Classes

Class Description

CView The base view class from which the specialized view
classes are derived

CCtrlView A base class from which view classes that implement 32-
bit Windows common controls (such as the ListView,
TreeView, and RichEdit controls) are derived

CDaoRecordView |Same as CRecordView, except used with the OLE DB
database classes

CEditView A view class that provides basic text-editing features

CFormView A view class that implements a form-like window using a
dialog box resource

javascript:popUp('04uvc02.gif')

CHtmlIView A view class that can display HTML, with all the
capabilities of Microsoft Internet Explorer

CListView A view class that displays a ListView control in its
window

COleDBRecordView |Same as CRecordView, except used with the DAO
database classes

CRecordView A view class that can display database records along
with controls for navigating the database

CRichEditView A view class that provides more sophisticated text-
editing capabilities by using the RichEdit control

CScrollView A view class that provides scrol ling capabilities

CTreeView A view class that displays a TreeView control in its
window

To use one of these classes, substitute the desired class for the CView class in the
application's project. When using AppWizard to generate your project, you can specify
the view class you want in the wizard's Step 6 of 6 dialog box, as shown in Figure 4.3.
When you have the desired class installed as the project's view class, you can use the
specific class's member functions to control the view window. Chapter 5 demonstrates
using the CScrollView class to implement a scrolling view.

A CEditView object, on the other hand, gives you all the features of a Windows edit
control in your view window. Using this class, you can handle various editing and
printing tasks, including find-and-replace. You can retrieve or set the current printer
font by calling the GetPrinterFont() or SetPrinterFont() member function or get the
currently selected text by calling GetSelectedText(). Moreover, the FindText() member
function locates a given text string, and OnReplaceAll() replaces all occurrences of a
given text string with another string.

FIG. 4.3 You can use AppWizard to select your application’s base view class.

The CRichEditView class adds many features to an edit view, including paragraph
formatting (such as centered, right-aligned, and bul leted text), character attributes
(including underlined, bold, and italic), and the capability to set margins, fonts, and
paper size. As you might have guessed, the CRichEditView class features a rich set of
methods you can use to control your application's view object.

Figure 4.4 shows how the view classes fit into MFC's class hierarchy. Describing these
various view classes fully is beyond the scope of this chapter. However, you can find
plenty of information about them in your Visual C++ online documentation.

FIG. 4.4 The view classes all trace their ancestry back to CView.

javascript:popUp('04uvc03.gif')
javascript:popUp('04uvco04.gif')

Document Templates, Views, and Frame Windows

Because you've been working with AppWizard-generated applications in this chapter,
you've taken for granted a lot of what goes on in the background of an MFC
document/view program. That is, much of the code that enables the frame window (your
application's main window), the document, and the view window to work together is
automatical ly generated by AppWizard and manipulated by MFC.

For example, if you look at the Initinstance() method of the Rectangles application's
CRecsApp class, you see (among other things) the lines shown in Listing 4.6.

Listing 4.6 RECS.CPP - Initializing an Application's Document

CSi ngl eDocTenpl at e* pDocTenpl at e;
pDocTenpl ate = new CSi ngl eDocTenpl at e(
| DR_MAI NFRAME,
RUNTI ME_CLASS(CRecsDoc) ,
RUNTI ME_CLASS(CMai nFr ane) ,
RUNTI ME_CLASS(CRecsVi ew)) ;

AddDocTenpl at e(pDocTenpl at e) ;

In Listing 4.6, you discover one secret that makes the document/view system work. In
that code, the program creates a document-template object. These document templates
have nothing to do with C++ templates, discussed in Chapter 26, "Exceptions and
Templates." A document template is an older concept, named before C++ templates were
implemented by Microsoft, that pulls together the fol lowing objects:

. Aresource ID identifying a menu resource - IDR_MAINFRAME in this case
. Adocument class - CRecsDoc in this case

. A frame window class - always CMainFrame

. Aview class - CRecsView in this case

Notice that you are not passing an object or a pointer to an object. You are passing the
name of the class to a macro called RUNTIME_CLASS. It enables the framework to
create instances of a class at runtime, which the application object must be able to do in
a program that uses the document/view architecture. In order for this macro to work,
the classes that will be created dynamical ly must be declared and implemented as such.
To do this, the class must have the DECLARE_DYNCREATE macro in its declaration (in
the header file) and the IMPLEMENT_DYNCREATE macro in its implementation.
AppWizard takes care of this for you.

For example, if you look at the header file for the Rectangles application's CMainFrame
class, you see the following line near the top of the class's declaration:

DECLARE_DYNCREATE(CMai nFr ame)

As you can see, the DECLARE_DYNCREATE macro requires the class's name as its single
argument.

Now, if you look near the top of CMainFrame's implementation file (MAINFRM.CPP), you
see this line:

| MPLEMENT _DYNCREATE(CMai nFr ame, CFr ameWd)

The IMPLEMENT_DYNCREATE macro requires as arguments the name of the class and
the name of the base class.

If you explore the application’s source code further, you find that the document and
view classes also contain the DECLARE_DYNCREATE and IMPLEMENT _DYNCREATE
macros.

If you haven't heard of frame windows before, you should know that they contain all
the windows involved in the applications - this means control bars as well as views.
They also route messages and commands to views and documents, as discussed in Chapter
3.

The last line of Listing 4.6 calls AddDocTemplate() to pass the object on to the
application object, CRecsApp, which keeps a list of documents. AddDocTemplate() adds
this document to this list and uses the document template to create the document
object, the frame, and the view window.

Because this is a Single Document Interface, a single document template
(CSingleDocTemplate) is created. Multiple Document Interface applications use one
CMultiDocTemplate object for each kind of document they support. For example, a
spreadsheet program might have two kinds of documents: tables and graphs. Each would
have its own view and its own set of menus. Two instances of CMultiDocTemplate would
be created in Initinstance(), each pulling together the menu, document, and view that
belong together. If you've ever seen the menus in a program change as you switched from
one view or document to another, you know how you can achieve the same effect: Simply
associate them with different menu resource IDs as you build the document templates.

+= Previous Ch